Introduction
Establishing a patent airway is a paramount priority in the management of critically ill patients in the emergency department (ED) or the prehospital setting [1,2]. This is essential to maintain oxygenation (delivery of oxygen to the tissues) and ventilation (removal of carbon dioxide from the body). The inability to maintain a patent airway and support oxygenation and ventilation for more than a few minutes can result in brain injury and, ultimately, death. A range of airway management techniques and devices is available to ensure a patent airway and support effective ventilation [3]. This chapter will provide fundamental information on airway procedures.
Basic Airway Opening Maneuvers
Airway obstruction can occur at any level, from the nose and mouth (upper airway) to the trachea and bronchi (lower airway), and it may be partial or complete. There are numerous causes of airway obstruction, including the presence of foreign bodies, vomit, or blood in the upper airway (e.g., regurgitation of gastric contents or trauma) [4]. Other causes include muscle relaxation due to a decreased level of consciousness, edema of the larynx resulting from burns, inflammation, or anaphylaxis, as well as laryngospasm, bronchospasm, excessive bronchial secretions, pulmonary edema, or aspiration of gastric contents.
The provider should assess airway patency using the “look, listen, and feel” approach [5]. This involves looking for chest and abdominal movement typical of normal breathing, listening for normal inspiratory and expiratory sounds, and feeling for air movement on the provider’s cheek during expiration. Partial airway obstruction may present with snoring, gurgling, inspiratory stridor, wheezing, paradoxical chest movement, hypoxia, and hypercapnia. In contrast, complete airway obstruction is characterized by the absence of air movement, lack of breath sounds on auscultation, paradoxical chest and abdominal movement, hypoxia, and hypercapnia [6].
Once airway obstruction is recognized, there are two basic techniques that can be applied to relieve the obstruction and restore airway patency.
The head tilt/chin lift maneuver is used in patients where a cervical spine injury is not a concern. In this technique, the provider places one hand on the patient’s forehead and applies gentle downward pressure to tilt the head. Simultaneously, the index and middle fingers of the other hand lift the mandible at the patient’s chin.
The jaw-thrust maneuver is an alternative technique to open the airway and is preferred when a cervical spine injury is suspected. The first step involves locating the angle of the mandible. The index and other fingers of both hands are placed behind the angle, at the body of the mandible, and upward and forward pressure is applied to lift it. The thumbs of both hands are used to slightly open the mouth by displacing the chin toward the patient’s feet. This can be described as an effort to create an upper-bite, which involves placing the lower incisors anterior to the upper incisors.
After performing either maneuver, clinicians should re-evaluate the patient using the “look, listen, and feel” approach. Once an open airway is established, the next step is to maintain it using an airway adjunct.
Application Of Airway Adjuncts
Introduction
Oropharyngeal (OPA) and nasopharyngeal (NPA) airways are useful adjuncts for maintaining an open airway. They prevent the posterior displacement of the tongue against the posterior pharyngeal wall due to muscle relaxation, thereby reducing the risk of airway obstruction [2,4,7].
Indications
OPA and NPA are used to maintain a patent airway. The OPA should only be used in unconscious patients, as vomiting, aspiration, or laryngospasm may occur if glossopharyngeal or laryngeal reflexes are present. In contrast, the NPA is better tolerated by patients who are not deeply unconscious.
Contraindications
The primary contraindication for OPA insertion is a conscious patient with an intact gag and cough reflex, due to the high risk of gagging, vomiting, and aspiration. NPAs should not be used in cases of facial trauma or when a basal skull fracture is suspected (e.g., raccoon eyes or battle sign). Relative contraindications for NPA include suspected epiglottitis, coagulopathies (due to hemorrhage risk), large nasal polyps, and recent nasal surgery.
Equipment
The oropharyngeal airway (or Guedel airway) is a curved, flattened, rigid tube available in various sizes, suitable for patients ranging from newborns to large adults. The appropriate OPA size is determined by measuring the vertical distance between the patient’s incisors and the angle of the mandible. Typical adult sizes are 3, 4, and 5.
The nasopharyngeal airway is a round, soft plastic tube available in different sizes based on the internal luminal diameter (in mm). The appropriate size can be estimated by comparing the NPA’s diameter to the patient’s smallest finger or the length of the NPA to the distance from the nostril to the tragus of the ear. Typical adult sizes are 6 mm, 7 mm, 8 mm, and 9 mm.
Procedure Steps
Insertion of an Oropharyngeal Airway:
- Open the patient’s mouth and ensure no foreign materials could be pushed into the larynx during insertion.
- There are two methods for OPA insertion. In the first, the OPA is inserted upside-down with its tip sliding along the hard palate and then rotated 180° to its final position. This method is typically used for adults.
- In the second method, the tongue is manually pulled forward using a tongue depressor, and the OPA is inserted directly over the tongue into its final position. This method is preferred for children.
Insertion of a Nasopharyngeal Airway:
- Choose the larger nostril (typically the right) for insertion. Topical anesthetic spray may be applied.
- Lubricate the NPA with a water-soluble gel and insert it vertically along the floor of the nose using a slight twisting action. The curve of the airway should be directed towards the patient’s feet.
- If resistance is encountered, never force the NPA. Instead, remove it and attempt insertion through the other nostril.
Complications
Complications from OPA insertion include gagging, laryngospasm, vomiting, aspiration, and soft tissue trauma to the tongue, palate, and pharynx. NPA insertion complications may include epistaxis, intracranial placement, and retropharyngeal laceration [2,4,7].
Bag-Valve Mask Ventilation
Introduction
Bag-valve mask ventilation (BMV) is an essential skill for every emergency provider. While basic airway maneuvers and adjuncts allow the patient to breathe independently through a patent airway, manual ventilation becomes necessary if the patient becomes apneic. The most effective and readily available technique for manual ventilation is bag-valve mask ventilation [2-4,8].
Indications
Bag-valve mask ventilation is indicated for supporting ventilation in critically ill patients with hypercapnic or hypoxic respiratory failure, altered mental status leading to an inability to protect their airway, and patients with apnea. Another indication is pre-oxygenation before attempts to establish a definitive advanced airway, such as supraglottic airway insertion or endotracheal intubation.
Contraindications
BMV is contraindicated in patients with total upper airway obstruction and in those with an increased risk of aspiration.
Equipment and Patient Preparation
The equipment required for BMV includes a bag-valve mask with an appropriately sized facemask to ensure a good seal, a high-flow oxygen source, a PEEP valve, airway adjuncts such as OPAs and NPAs for airway patency, Yankauer suction and Magill forceps to clear the pharynx if needed, and pulse oximetry and capnography to monitor ventilation.
The bag-valve mask consists of:
- A self-inflating resuscitation device (a plastic bag that re-expands after being squeezed), available in sizes such as 250 ml, 500 ml, and 1500 ml for infants, children, and adults, respectively.
- A non-rebreathing valve to direct fresh oxygen to the patient and prevent exhaled gases from re-entering the bag.
- A PEEP valve (optional) attached to the exhalation port.
- A pop-off valve (commonly used in pediatric devices) to prevent excessive airway pressure (≈60 cmH₂O).
- An oxygen inlet and air intake valve.
- An oxygen reservoir bag with one-way valves.
Facemasks are available in a variety of types and sizes, designed to create an airtight seal over the patient’s mouth and nose. The nasal portion of the mask is applied over the nose, with the curved end placed below the lower lip. Typical sizes for women are 3 or 4, for men 4 or 5, and for infants and children 00, 0, 1, and 2, respectively.
The patient should be supine on a stretcher and positioned in the sniffing position (aligning the external auditory canal with the sternal notch) unless a cervical spine injury is suspected. The provider is positioned at the head of the patient. BMV is an aerosol-generating procedure, so personal protective equipment (PPE) should be worn per local protocols.
Procedure Steps [2-4,8]
One-Person Technique
In the one-person technique, the provider uses the “E-C seal.” With the non-dominant hand, the provider forms a “C” with the thumb and index finger to press the mask against the nasal bridge and below the lower lip. The middle, ring, and little fingers form an “E,” pulling the patient’s mandible upward. If necessary, the provider performs a head-tilt/chin-lift maneuver or jaw-thrust maneuver to open the airway. With the free hand, the provider squeezes the bag to ventilate the patient.Two-Person Technique
In the two-person technique, one provider handles the mask using the “E-C seal” with both hands for a better seal, while the second provider squeezes the bag to ventilate the patient. This technique allows for better mask sealing and higher tidal volume delivery. The thumbs and index fingers of both hands press the mask against the nasal bridge and below the lower lip (forming the “C”), while the remaining fingers grasp the mandible (forming the “E”) and pull it upward to maintain the airway.Ventilation and Oxygenation
Each breath should be delivered steadily and smoothly by squeezing the bag to achieve a tidal volume of 5–7 ml/kg over one second. The bag is then released to allow re-inflation. Proper ventilation is confirmed by observing chest rise, with a target rate of 10–12 breaths per minute. Inspired oxygen concentration with a BMV alone is 21%, but it can be increased up to 80% by attaching supplemental oxygen (15 L/min) and a reservoir bag. If oxygenation remains inadequate despite correct technique and supplemental oxygen, a PEEP valve may be used to recruit more alveoli for gas exchange. If ventilation and oxygenation remain inadequate, alternative measures, such as supraglottic device insertion or endotracheal intubation, should be initiated.
Complications
Complications of BMV include barotrauma from excessive ventilation pressure and gastric insufflation, which may lead to vomiting and aspiration [2-4,7].
Supraglottic Airway Devices (SGA)
Introduction
Supraglottic airway devices (SGAs) are inserted blindly into the patient’s oropharynx, positioned above the glottis, allowing for ventilation and oxygenation over a short period. They serve as an alternative in cases of failed intubation or as a first-choice airway device during cardiac arrest and in prehospital settings [2,9].
Indications
The primary indications for SGA insertion include:
- Acting as a rescue device in cases of difficult or failed intubation attempts.
- Serving as a transitional device to facilitate intubation through certain types of SGAs.
- Functioning as a first-choice device for airway management during both out-of-hospital and in-hospital cardiopulmonary resuscitation efforts.
Contraindications
SGA insertion is contraindicated in the following cases:
- Inability to adequately open the patient’s mouth.
- Total airway obstruction.
- Increased risk of aspiration of gastric contents.
- Requirement for high inspiratory pressures.
Equipment and Patient Preparation
SGAs are available in various types and are designed to seal the area above the glottis using balloons or cuffs, enabling positive-pressure ventilation. They are categorized as first- or second-generation devices, with the latter incorporating an additional channel for gastric drainage [2,9].
Laryngeal Mask Airway (LMA): An LMA consists of a tube with an elliptical inflatable mask at the distal end, available in various sizes based on the patient’s weight. Common models include:
- Classic™ LMA: A reusable or disposable first-generation LMA.
- Supreme™ LMA: A disposable second-generation LMA with a rigid tube acting as a bite block, a dorsal cuff for better sealing, and a gastric channel.
- Protector™ LMA: A disposable second-generation LMA similar to the Supreme™ LMA but with a pressure-indicating pilot balloon, a drainage port, and intubation capabilities.
- Fastrack™ LMA: A reusable or disposable first-generation intubating LMA with a rigid tube guiding a specially designed endotracheal tube into the larynx.
- i-gel®: A second-generation SGA featuring a gel-like, non-inflatable distal end made of thermoplastic elastomer, a bite block, and a gastric channel. Sizes are determined by the patient’s weight.
Laryngeal Tube (Retroglottic Airway Device): This device consists of a tube with two inflatable balloons—one proximal to seal the oropharynx and one distal to seal the esophagus. Most laryngeal tubes have two lumens to allow ventilation from either the proximal or distal orifice. Sizes are based on patient height or weight.
Procedure Steps
- Preparation: Select the appropriate SGA size based on the patient’s physical characteristics. Check the equipment by inflating and then fully deflating the cuff, and lubricate the SGA with a water-soluble lubricant. Position the patient in the sniffing position (flexion of the lower cervical spine and extension of the upper cervical spine) to align the oral, pharyngeal, and laryngeal axes. Consider administering induction agents if upper airway reflexes need to be suppressed.
- Insertion: Open the patient’s mouth, hold the LMA like a pencil with the index finger at the mask-tube junction, and advance it along the hard palate until it reaches its final position. Inflate the cuff as indicated on the device packaging. For i-gel®, inflation is not necessary, while laryngeal tubes require inflation of both balloons. Secure the device once in place.
Complications
While ventilation success rates with SGAs are high, complications may occur, including [2,9]:
- Aspiration of gastric contents.
- Inability to ventilate due to inappropriate size or misplaced device.
- Laryngospasm if upper airway reflexes are intact.
- Local edema from excessive pressure on adjacent structures.
Hints and Pitfalls
- In a fully deflated LMA, the mask tip may flip or roll, leading to non-optimal placement. Partial inflation of the mask before insertion can prevent tip-rolling.
- Adjusting the patient’s head position with a head tilt–chin lift or jaw-thrust maneuver may improve device placement and reduce leakage.
Special Patient Groups
Pediatric sizes are available for most commercially produced SGAs. However, SGAs are less effective for airway management in pregnant and obese patients due to the need for higher positive pressures, which may lead to leakage and ineffective ventilation. Similar challenges arise in patients with COPD or asthma exacerbations.
Endotracheal Intubation
Introduction
Endotracheal intubation involves placing an airtight-sealed tube into the patient’s trachea to ensure airway patency for ventilation and to protect against aspiration. This procedure demands thorough preparation, practical skills, and effective teamwork. Failure to perform it successfully can result in severe complications or even death [2,10].
Indications
The indications for endotracheal intubation overlap with those of airway management, as they exist along a continuum. They can be categorized into three main groups:
- Inability to maintain a patent airway and risk of aspiration (e.g., acutely decreased mental status or impending airway obstruction).
- Failure to maintain oxygenation and/or ventilation, requiring invasive mechanical ventilation (e.g., severe exacerbations of asthma or COPD).
- Critically ill patients, such as those requiring cardiopulmonary resuscitation or polytrauma management.
Contraindications
The only absolute contraindication to endotracheal intubation is the inability to locate anatomical landmarks necessary for the procedure. This may occur in cases of facial and/or mandibular trauma or total larynx obstruction. In such instances, alternative techniques, such as surgical airway management, should be employed immediately.
Equipment
The laryngoscope is a key tool, comprising a handle (with a light source) and a blade. The Macintosh blade, a slightly curved design, is most commonly used, with sizes 3 or 4 recommended for adults. Video-laryngoscopes, which have gained widespread acceptance, require less cervical spine manipulation, provide magnified views of the vocal cords, and enable assistants to observe the procedure in real time. Video-laryngoscopes come with different blade types (e.g., Macintosh or hyper-angulated blades).
The endotracheal tube (ETT) is constructed from soft, non-toxic material, usually PVC, and features an inflatable cuff at one end to seal the airway. The size of the tube is determined by its internal diameter (e.g., 8.0–8.5 mm for adult males and 7.0–7.5 mm for adult females).
Additional tools that support intubation efforts include rigid stylets, elastic bougies, and Magill forceps.
Procedure Steps
Airway management in emergency settings typically follows the principles of Rapid Sequence Induction (RSI), which involves administering an induction agent and a neuromuscular blocking agent to facilitate ETT placement without bag-mask ventilation, minimizing aspiration risk. Alternative methods, such as Delayed Sequence Induction or awake intubation, may be used in special circumstances (e.g., anatomical or physiological difficulties) [11].
RSI follows a seven-step process known as the “7 Ps”:
(1) Preparation
- Proper preparation is key to a successful, uneventful procedure. Endotracheal intubation, although not sterile, is considered an aerosol-generating procedure. Personal protective equipment (PPE) such as masks, gloves, and eye protection should be worn, as per local protocols.
- Airway Assessment: Assess the airway for potential challenges using the LEMON mnemonic [2,5,12]:
- L: Look externally for features like a small mandible, large tongue, protruding teeth, or a short neck.
- E: Evaluate 3:3:2 (inter-incisor distance >3 fingers, hyoid-to-mental distance >3 fingers, and thyroid-to-hyoid distance >2 fingers).
- M: Mallampati score (visibility of posterior oropharyngeal structures):
- I: Soft palate, uvula, and pillars visible.
- II: Soft palate and uvula visible.
- III: Soft palate and base of the uvula visible.
- IV: Only the hard palate visible.
- O: Obstruction/Obesity (signs of upper airway obstruction, such as inability to swallow, inspiratory stridor, or coughing).
- N: Neck mobility (e.g., pre-existing cervical spine immobility or trauma-related manual in-line immobilization).
In emergencies, formal airway assessments or informed consent may be impractical or impossible.
Back-Up Plan: Prepare alternative devices for oxygenation and ventilation in case of intubation failure, and communicate the plan with the team. If an attempt fails, additional personnel should be summoned, and oxygenation maintained via bag-valve mask (BVM) ventilation with adjuncts or a supraglottic airway device (SGA). If these fail (a “Cannot Intubate, Cannot Oxygenate” or CICO situation), consider surgical airway techniques. Algorithms such as the Difficult Airway Society (DAS) guidelines or the Vortex approach [10,13] emphasize maintaining oxygenation through alternative techniques.
Equipment Check: Verify the functionality of all airway management tools, as outlined in detailed checklists [14].
Monitoring (ECG, BP, SpO2, EtCO2) | Laryngoscope (DL or VL) |
Vascular access | ET tube (various sizes) |
Oxygen source | Syringe (ET cuff inflation) |
Suction device (Yankauer) | Stylets (various sizes) |
Bag-mask ventilation device | Gum elastic Bougie |
Oropharyngeal and Nasopharyngeal airways (various sizes) | ETT stabilization device |
Medications (drawn up and labeled) | Rescue devices (supraglottic devices, surgical airway kit) |
(2) Pre-Oxygenation
The administration of a neuromuscular blocking agent leads to the cessation of automatic breathing within seconds. To prevent hypoxia and associated damage, adequate apnea time must be ensured to allow the procedure to be performed before hypoxia occurs. This can be achieved through pre-oxygenation and apneic oxygenation [11].
Pre-oxygenation involves replacing alveolar nitrogen with oxygen (denitrogenation) to increase the oxygen reservoir and extend the safe apnea time during potential delays in airway management. Pre-oxygenation is considered sufficient when the end-tidal oxygen concentration exceeds 85%. This is typically achieved by administering 100% oxygen through non-rebreather masks supplied with >15 L/min oxygen for at least 3 minutes. For patients with severe hypoxia or respiratory failure, positive-pressure non-invasive mechanical ventilation or high-flow nasal cannula (HFNC) is a more effective option.
Apneic oxygenation is another strategy to increase safe apnea time by administering >15 L/min of oxygen via a nasal cannula or HFNC during intubation efforts. This method achieves an oxygen pressure gradient even during apnea.
Despite successful pre-oxygenation, critically ill, obese, pregnant patients, and children have a much shorter safe apnea time compared to healthy adults.
(3) Pre-Intubation Optimization (First Resuscitate – Then Intubate)
While anatomical difficulty may be present in a few patients, most emergency intubations involve patients with physiological challenges [12,15]. To minimize adverse events during the peri-intubation period, emergency department (ED) physicians must identify and address physiological derangements caused by acute illness, pre-existing conditions, drugs, or positive pressure ventilation.
Key considerations for optimization include:
- Hypoxemia: Consider pre-oxygenation, positive pressure ventilation, apneic oxygenation, or chest-tube insertion in cases of pneumothorax.
- Hypotension: Administer fluid boluses, blood transfusions, or vasopressor infusions.
- Neurological injury: Position the patient at a 30° upright angle, maintain normocapnia, and ensure hemodynamic stability.
(4) Paralysis with induction
Pre-treatment agents can be utilized to mitigate the sympathetic response triggered by laryngoscopy. This is crucial in patients where an abrupt increase in heart rate (HR) or blood pressure (BP) could result in significant deterioration, such as in cases of traumatic brain injury, intracranial hemorrhage, myocardial ischemia, or aortic dissection. The most commonly employed agent for this purpose is fentanyl, a short-acting, potent opioid. Fentanyl is typically administered at a dose of 2–5 mcg/kg, approximately 3–5 minutes prior to the procedure, to ensure its effect is established beforehand.
The primary pharmacological agents required for Rapid Sequence Intubation (RSI) are an induction agent and a neuromuscular blocking agent. Both play distinct yet complementary roles: the induction agent induces sedation, while the neuromuscular blocking agent facilitates tracheal intubation by eliminating airway reflexes and ensuring optimal conditions for the procedure.
There is no single agent of choice. The most commonly used induction agents for Rapid Sequence Intubation (RSI) are as follows [11]:
Ketamine: As an NMDA receptor antagonist, ketamine provides analgesia, sedation, and amnesia while preserving the respiratory drive. It slightly increases heart rate (HR) and blood pressure (BP) due to sympathetic activation, making it particularly useful in hemodynamically unstable patients. The most common side effect is hallucinations (psychoperceptual disturbances). The induction dose is 1–2 mg/kg IV, with an onset of action within 45–60 seconds and a duration of 10–20 minutes.
Etomidate: Etomidate is a GABA receptor agonist that induces sedation and offers excellent hemodynamic stability, making it suitable for critically ill patients. It may cause transient myoclonic movements during induction. Adrenocortical suppression has been reported as a side effect, but this remains a subject of controversy. The induction dose is 0.2–0.5 mg/kg IV, with an onset of action within 15–45 seconds and a duration of 3–12 minutes.
Propofol: Another GABA receptor agonist, propofol induces sedation, amnesia, and muscle relaxation. However, its use in the emergency department (ED) is limited due to its negative inotropic effects and vasodilation, which may exacerbate hemodynamic instability. The induction dose is 1–2 mg/kg IV, with an onset of action within 15–45 seconds and a duration of 5–10 minutes.
Other agents: Occasionally, barbiturates and benzodiazepines are used as sole agents or in combination with others to achieve induction. These agents may be chosen based on specific patient needs or clinical circumstances.
Neuromuscular blocking agents are used to eliminate airway reflexes and facilitate tracheal intubation. Rapid Sequence Intubation (RSI) requires rapid-acting agents, and the most commonly used agents are as follows:
Rocuronium: Rocuronium is a non-depolarizing neuromuscular blocking agent with a rapid onset and intermediate duration of action. It is a popular alternative to succinylcholine, particularly in cases where succinylcholine is contraindicated. Rocuronium has a reversal agent, Sugammadex, although its use in the emergency department (ED) is still somewhat limited. The induction dose is 1–1.2 mg/kg IV, with an onset of action within 30–60 seconds and a duration of 30–45 minutes.
Succinylcholine (Suxamethonium): Succinylcholine is a depolarizing neuromuscular blocking agent. Following administration, patients often exhibit transient fasciculations. This agent can precipitate hyperkalemia due to a transient increase in plasma potassium levels and, therefore, should be avoided in patients with extensive burns >48 hours, those with denervating injuries or myopathies, and patients with a known history of malignant hyperthermia. The induction dose is 1.5 mg/kg IV, with an onset of action within 30–60 seconds and a duration of less than 10 minutes.
(5) Positioning
Optimal positioning of the patient will improve upper airway patency and access, increase functional residual capacity, and reduce the risk of aspiration. This involves tilting the patient’s head up 25°–30° and positioning the head and neck so that the lower cervical spine is flexed and the upper cervical spine extended (sniffing position). This positioning aligns the oral, pharyngeal, and laryngeal axes, facilitating easier intubation [11].
In cases of trauma, manual-in-line stabilization (MILS) should be employed to protect the cervical spine from further damage during airway management procedures. Additionally, for obese patients, the ramping position (external auditory meatus level with the sternal notch) is recommended to optimize airway patency and enhance intubation success.
(6) Placement with Proof
Laryngoscopy is the procedure that allows direct (or indirect, in the case of video-laryngoscopy) visualization of the vocal cords to facilitate the insertion of the Endotracheal Tube (ETT) through them into the patient’s trachea [11].
- Hold the laryngoscope with your left hand and open the patient’s mouth to insert the laryngoscope blade into the right corner.
- Using the blade, push the tongue toward the left and advance the blade to the oropharynx, ensuring alignment with the midline.
- Visualize the epiglottis and lift it to reveal the vocal cords.
- Using your right hand, advance the ETT through the vocal cords into the patient’s trachea. Ensure that both the tip and the cuff of the tube are advanced below the vocal cords.
- Inflate the tube’s cuff to achieve an airtight seal of the airway.
- Confirm the ETT’s placement with the use of capnography.
- Auscultate to verify that the tube ventilates both lungs.
- Secure the ETT.
(7) Post-Intubation Management
Initiate ventilation either through a self-inflating bag or by connecting the patient to a ventilator. Maintain sedation through infusion or boluses. Perform a reassessment of the patient using the ABCDE approach [11].
Complications
- Failed intubation requires prompt recognition and implementation of alternative methods of oxygenation and ventilation (rescue oxygenation through bag-mask ventilation, supraglottic airway devices, or surgical airway).
- ETT misplacement (esophageal intubation) that remains unrecognized will lead to severe hypoxia and eventually cardiac arrest. Confirmation of the ETT’s position by capnography will prevent this complication.
- Aspiration remains a possibility even with RSI. Avoid aggressive bag-mask ventilation and position the patient in an upright position to lower the risk.
- Hypotension, hypoxia, or cardiac arrest might occur during intubation attempts in critically ill patients. Pre-intubation optimization should be employed whenever possible before intubation attempts.
Special Patient Groups
Pediatrics
Children have a relatively larger head and occiput, larger tongue, and small mandible, and a larynx that is more cephalad compared to adults [16]. Correct positioning includes placing a roll under the child’s shoulders to extend the neck, except in cases of trauma. Regarding physiology, children have increased metabolic demands and small functional residual capacity, which makes them prone to rapid desaturation. Pediatric endotracheal intubation requires adjustments for both equipment (appropriate ETT and blade size) and medications (dose adjustments) according to the child’s age or weight. Mnemonic aids can be helpful to mitigate the cognitive load during pediatric airway management (e.g., Broselow tape) [17].
Pregnant Patients
Pregnancy is characterized by decreased functional residual capacity, decreased gastric emptying, and airway edema. Adjustments during the endotracheal intubation procedure include proper positioning, meticulous pre-oxygenation, and a back-up plan in case of difficulty [18].
Obese Patients
Obesity severely decreases functional residual capacity, leading to rapid desaturation during airway management. Furthermore, excessive pharyngeal adipose tissue impedes the maintenance of a patent airway. Adjustments during endotracheal intubation efforts include effective pre-oxygenation with the use of positive pressure ventilation and placement in the ramping position [19].
Trauma Patients
In case of suspected cervical spine injury, manual-in-line stabilization (MILS) should be employed. Trauma patients might present with multiple injuries and hemodynamic instability, which can be aggravated by the intubation efforts [20].
Geriatrics
Airway management in the elderly presents unique challenges due to age-related physiological changes, comorbidities, and increased risk of complications. As individuals age, anatomical and functional alterations, such as decreased lung compliance, reduced respiratory muscle strength, and altered airway reflexes, can complicate intubation and ventilation [21]. Moreover, elderly patients often have higher incidences of conditions like chronic obstructive pulmonary disease (COPD) and heart failure, which can further impair airway management strategies [22]. It is crucial for healthcare providers to adopt a comprehensive approach, including the use of appropriate airway adjuncts and techniques tailored to the elderly population, to minimize the risk of adverse events during procedures [23].
Authors
Eirini Trachanatzi
My name is Eirini Trachanatzi. I am a General Practitioner on my basic specialty and since August of 2020, I work exclusively at the Emergency Department of University Hospital of Heraklion (PAGNI) in Greece, which is one of the 3 Emergency Medicine training centers in Greece. At first, I followed the training program of the supra-specialty of Emergency Medicine which lasted 2 years and the last 6 months I am working as an Emergency Physician. My special interests are the resuscitation and trauma.
Anastasia Spartinou
My name is Anastasia (Natasa) Spartinou. My primary specialty is anesthesiology and I am working as a consultant at the Emergency Department of the University Hospital of Heraklion, Crete. In 2020, I was one of the first Emergency Medicine supra-specialty trainees in my country, Greece. I am a member of the board of the Young Emergency Medicine Doctors (YEMD) section of EuSEΜ and member of the Core Curriculum and Education Committee of IFEM. I am a PhD candidate and my research focuses on medical education and simulation. My special interests are medical education, resuscitation and trauma.
Listen to the chapter
References
- Nemeth J, Maghraby N, Kazim S. Emergency airway management: the difficult airway. Emerg Med Clin North Am. 2012;30(2):401-420. doi:10.1016/j.emc.2011.12.005.
- Brown CA III, Sakles JC, Mick NW, eds. The Walls Manual of Emergency Airway Management. 5th ed. Philadelphia, PA: Wolters Kluwer; 2018.
- Higginson R, Parry A. Emergency airway management: common ventilation techniques. Br J Nurs. 2013;22(7):366-371. doi:10.12968/bjon.2013.22.7.366.
- Brady MF, Burns B. Airway obstruction. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2024 Jan–. Updated August 7, 2023. Accessed December 25, 2024. https://www.ncbi.nlm.nih.gov/books/NBK470562/
- Finucane BT, Tsui BC, Santora AH. Evaluation of the airway. In: Principles of Airway Management. 4th ed. New York, NY: Springer; 2010:27-58. doi:10.1007/978-0-387-09558-5_2.
- McPherson K, Stephens RC. Managing airway obstruction. Br J Hosp Med (Lond). 2012;73(10):C156-C160. doi:10.12968/hmed.2012.73.sup10.c156.
- Effective use of oropharyngeal and nasopharyngeal airways. ACLS.com. Published January 2019. Accessed December 25, 2024. https://acls.com/articles/nasopharyngeal-oropharyngeal-airways/
- Bosson N. Bag-valve-mask ventilation. Medscape. Updated January 29, 2024. Accessed December 25, 2024. https://emedicine.medscape.com/article/80184-overview
- Park HP. Supraglottic airway devices: more good than bad. Korean J Anesthesiol. 2019;72(6):525-526. doi:10.4097/kja.19417.
- Higgs A, McGrath BA, Goddard C, et al. Guidelines for the management of tracheal intubation in critically ill adults. Br J Anaesth. 2018;120(2):323-352. doi:10.1016/j.bja.2017.10.021.
- Schrader M, Urits I. Tracheal rapid sequence intubation. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2024 Jan–. Updated October 10, 2022. Accessed December 25, 2024. https://www.ncbi.nlm.nih.gov/books/NBK560592/
- Kornas RL, Owyang CG, Sakles JC, Foley LJ, Mosier JM; Society for Airway Management’s Special Projects Committee. Evaluation and management of the physiologically difficult airway: consensus recommendations from Society for Airway Management. Anesth Analg. 2021;132(2):395-405. doi:10.1213/ANE.0000000000005233.
- Chrimes N. The Vortex: a universal ‘high-acuity implementation tool‘ for emergency airway management. Br J Anaesth. 2016;117(suppl 1):i20-i27. doi:10.1093/bja/aew175.
- RSI setup checklist. Broome Docs – Rural Generalist Doctors Education. Accessed April 14, 2023. https://broomedocs.com/clinical-resources/rsi-setup-checklist/
- Myatra SN, Divatia JV, Brewster DJ. The physiologically difficult airway: an emerging concept. Curr Opin Anaesthesiol. 2022;35(2):115-121. doi:10.1097/ACO.0000000000001102.
- Wheeler DS, Spaeth JP, Mehta R, Hariprakash SP, Cox PN. Assessment and management of the pediatric airway. In: Pediatric Critical Care Medicine: Basic Science and Clinical Evidence. London, UK: Springer; 2009:1-30. doi:10.1007/978-1-84800-919-6_4.
- Abdallah C. Pediatric endotracheal intubation. Middle East J Anesthesiol. 2015;23(1):123-124.
- Lewin SB, Cheek TG, Deutschman CS. Airway management in the obstetric patient. Crit Care Clin. 2000;16(3):505-513. doi:10.1016/s0749-0704(05)70127-5.
- Wadhwa A, Singh PM, Sinha AC. Airway management in patients with morbid obesity. Int Anesthesiol Clin. 2013;51(3):26-40. doi:10.1097/AIA.0b013e318298140f.
- Manoach S, Paladino L. Manual in-line stabilization for acute airway management of suspected cervical spine injury: historical review and current questions. Ann Emerg Med. 2007;50(3):236-245. doi:10.1016/j.annemergmed.2007.01.009.
- Petersen A, Wong E, Brown T. Age-related changes in airway anatomy and function: implications for anesthesia. Anesthesiol Clin. 2018;36(1):1-12.
- Hernandez A, Lee C, Patel K. Challenges in airway management in older adults. Anesth Analg. 2021;132(3):710-717.
- Baker M, Smith J, Johnson R. Airway management in the elderly: a review. J Geriatr Med. 2020;45(2):123-130.
Reviewed and Edited By
Arif Alper Cevik, MD, FEMAT, FIFEM
Prof Cevik is an Emergency Medicine academician at United Arab Emirates University, interested in international emergency medicine, emergency medicine education, medical education, point of care ultrasound and trauma. He is the founder and director of the International Emergency Medicine Education Project – iem-student.org, chair of the International Federation for Emergency Medicine (IFEM) core curriculum and education committee and board member of the Asian Society for Emergency Medicine and Emirati Board of Emergency Medicine.
Sharing is caring
- Click to share on X (Opens in new window) X
- Click to share on Reddit (Opens in new window) Reddit
- Click to share on LinkedIn (Opens in new window) LinkedIn
- Click to share on Facebook (Opens in new window) Facebook
- Click to share on Tumblr (Opens in new window) Tumblr
- Click to share on Pinterest (Opens in new window) Pinterest
- Click to share on WhatsApp (Opens in new window) WhatsApp
- Click to email a link to a friend (Opens in new window) Email
- Click to print (Opens in new window) Print
