Approach to the trauma patient – ABCDE of trauma care

Approach to the trauma patient – ABCDE of trauma care

Case

Jane Doe, 22-year-old female, was in a major car crash and is approaching the trauma bay via an ambulance. You are aware that the patient’s condition is critical, so you do a quick run-through in your head about the approach that you will have to care for them once they arrive to your emergency department. What should your approach to a trauma patient be?

The ABCDE of Trauma Care

The Airway, Breathing, Circulation, Disability, Exposure (ABCDE) approach is a clinically proven approach to any critically ill patient that needs emergent care and treatment. It has been proven to improve patient outcomes, optimize team performance and save time when patients are in life-threatening conditions [1]. This approach is applicable to all patients (both adults and children), regardless of their underlying condition. However, the ABCDE approach is not applicable to patients who are in cardiac arrest, in which case the cardiopulmonary resuscitation guidelines should be used [2].

With the ABCDE approach, initial assessment and treatment are performed simultaneously. Once the entire survey is completed, reassessment should be conducted until the patient is stable enough for the care team to be able to move on to the secondary survey and look for a definitive diagnosis.

A - Airway

First, the care team should assess if the patient’s airway is patent. If the patient responds to the team in a normal voice, then that is a good sign that the airway is intact. It is important to note that airway obstruction can be complete or partial, and can be caused by upper airway obstruction or reduced level of consciousness.

Signs of complete airway obstruction are lack of respiration despite great effort. Signs of partial airway obstruction include:
– Changes in the patient’s voice
– Snoring or gurgling
– Stridor (noisy breathing)
– Increased breathing effort

Assess the patient’s airway by looking for rocking chest wall motion and any signs of maxillofacial trauma or laryngeal injury. Perform the head-tilt and chin-lift maneuver to open the airway (note that caution should be conducted in patients with C-spine injury). If there is anything that is noticeably obstructing the airway, suction or remove it. If possible, remove foreign bodies that are causing airway obstruction. Provide high-flow oxygen to the critically ill patient and perform definitive airway if needed [1].

B – Breathing

Generally, airway and breathing are examined simultaneously. Determine if breathing is intact by assessing the respiratory rate, inspecting the chest wall movement for symmetry, depth, and respiratory pattern. Additionally, assess for tracheal deviation and use of respiratory muscles. Percuss the chest for dullness or resonance, auscultate for breath sounds and apply a pulse oximeter [1].

Injuries that impact breathing should be immediately recognized, and life-threatening injuries should be addressed and managed [3]. For example, tension pneumothorax must be promptly relieved by needle thoracocentesis, bronchospasms should be managed with inhalation and assisted ventilation should be considered if breathing continues to be insufficient [1].

C – Circulation

Conditions that threaten the patient’s circulation and can be fatal include shock, hypertensive crises, vascular emergencies such as aortic dissection and aortic aneurisms. These conditions should be immediately identified and managed [1].

Circulation can be assessed by looking at the general appearance of the patient, including signs of cyanosis, pallor, flushing and diaphoresis. Assess for any obvious signs of hemorrhage, blood loss and level of consciousness. Additionally, capillary refill time and pulse rate should be assessed. Auscultate the chest for heart sounds, and blood pressure measurement and electrocardiography should be performed as soon as possible [1].

Additionally, assess for signs of hypovolemia and shock. If these are identified, obtain an intravenous access and infuse saline to restore circulating volume [1]. If there are life-threatening conditions that are compromising the patient’s circulation, promptly identify and treat them as needed. For example, tension pneumothorax should be immediately treated with needle decompression and cardiac tamponade can be relived with pericardiocentesis.

D - Disability

The main disability in the primary survey to be assessed for is the brain. Abnormal neurological status can be caused by primary brain injury or systemic conditions that effect brain perfusion, such as shock, hypoxia, intoxication etc. Assess the level of consciousness by using the Glasgow Coma Scale [4], look for pupillary response and limb movement.

The best way to prevent injury to the brain is to maintain adequate airway, breathing and circulation. Glucose levels can be assessed at bedside for decreased level of consciousness due to low blood glucose levels, and corrected with oral or infused glucose [1].

E – Exposure

The exposure portion of the ABCDE approach involves assessment of the whole-body to avoid any signs of missing injuries. During this part of the management, undress the patient fully and examine the back for any signs of C-spine precautions. Additionally, check for clues for any signs of underlying conditions, such as:

  • Signs of trauma (i.e. burns, gunshot wounds, stab wounds)
  • Rashes
  • Causes of sepsis (i.e. infected wounds, gangrene)
  • Toxins and drugs (i.e. needle track marks, chemicals, patches)
  • Other wounds such as bite marks, insect bites, embedded ticks
  • Iatrogenic causes (i.e. catheters, tubes, implants, surgical sites and scars)

Concluding Remarks

The ABCDE approach to the critically ill patient is a strong and proven clinical tool for initial assessment and treatment of patients in medical emergencies. Widespread knowledge of this skill is critical for healthcare workers and any team providing emergent care to trauma patients. 

*Note that this is a general approach to the trauma patient. Always consult your care team for adequate management of trauma patients and resort to reliable resources for more information on the ABCDE approach. 

References and Further Reading

  1. Thim, T., Krarup, N. H. V., Grove, E. L., Rohde, C. V., & Løfgren, B. (2012). Initial assessment and treatment with the Airway, Breathing, Circulation, Disability, Exposure (ABCDE) approach. International journal of general medicine5, 117.
  2. Koster, R. W., Baubin, M. A., Bossaert, L. L., Caballero, A., Cassan, P., Castrén, M., … & Sandroni, C. (2010). European Resuscitation Council Guidelines for Resuscitation 2010 Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation81(10), 1277-1292.
  3. Subcommittee, A. T. L. S., & International ATLS Working Group. (2013). Advanced trauma life support (ATLS®): the ninth edition. The journal of trauma and acute care surgery74(5), 1363-1366.
  4. Sternbach, G. L. (2000). The Glasgow coma scale. The Journal of emergency medicine19(1), 67-71.
Cite this article as: Maryam Bagherzadeh, Canada, "Approach to the trauma patient – ABCDE of trauma care," in International Emergency Medicine Education Project, January 19, 2022, https://iem-student.org/2022/01/19/abcde-of-trauma-care/, date accessed: May 18, 2022

Seizure: Lethal Dissection

Lethal Dissection Seizure

Case Presentation

A 49-year old female without any co-morbidities presented to the emergency department (ED) with seizures. On arrival, she was in a postictal state.

She had recently visited a local hospital with complaints of severe dysmenorrhea and low back pain. The attenders informed us that she was very sleepy and weak at that time, was treated for pain and given tranexamic acid, and sent home. The next day, she had one episode of Generalized Tonic-Clonic Seizure, and she arrived in our ED in a postictal phase. She vomited twice in the ED.

Her vitals were as follows: 

  • Blood pressure (BP): 160/100 mmHg.
  • Heart rate (HR): 22/min
  • Peripheral capillary oxygen saturation (SPO2): 98% on room air
  • General Random Blood Sugar (GRBS): 233 mg/dl
  • Glasgow Coma Scale (GCS): E2V5M6

Her examination was as follows:

  • The patient was drowsy but arousable. 
  • Pupils bilateral reacting to light. No anisocoria.
  • CNS examination could not be completed as the patient was drowsy.
  • A normal pattern of breathing. The respiratory examination was normal.
  • The abdomen was soft, symmetric, and non-tender without distention.

Point-of-care ultrasound (POCUS) showed a flap in the abdominal aorta. (See Figure 1 and 2 for transverse and longitudinal views of the aorta, respectively) Upon this finding, cardiac surgery and neurology consultations were sought.

Transverse section of the abdominal aorta showing a flap.
https://ibb.co/N6VyMD8

Image shows transverse section of the abdominal aorta showing a flap.

Abdominal aorta showing a flap
https://ibb.co/wwkYHJY

Image shows abdominal aorta showing a flap.

The laboratory results were as follows:

  • D-dimer: 1192 ng/ml
  • Haemoglobin (Hb): 10 g/dl
  • The international normalized ratio (INR): 1.25
  • Platelets: 260000 per mcL
  • Total leucocyte count (TLC): 22000 cells/mm3
  • Creatinine :1.6 mg/dl.

Meanwhile, the patient was suffering multiple seizure-like episodes, characterized by staring, deviation of the mouth, and irregular limb movements, but these episodes lasted for few minutes and ended without the postictal phase. The patient was drowsy but obeyed commands and did not have any recollection of those few minutes.

Head computed tomography (CT) showed no infarct or bleeding. It was normal.

CT angiogram and aortogram revealed that the patient had Stanford Type A aortic dissection with the flap extending to the entire left subclavian artery, with severely occluding filling defects and thrombosis of the false lumen into bilateral common carotid arteries (See Figure 3, 4 and 5). On the other end, the dissection extended to the common iliac arteries (See Figure 6).

CT Aortogram showing bilateral common carotid artery filling defects
https://ibb.co/M6TMqpq

Image shows CT Aortogram showing bilateral common carotid artery filling defects

And on the other loose of the string the dissection was extending till the common iliac arteries.
Ascending and descending aortic dissection
https://ibb.co/n8Rbdvm

Image shows ascending and descending aortic dissection

Dissection of the common iliac artery before bifurcation
https://ibb.co/jVjL0qJ

Image shows dissection of the common iliac artery before bifurcation.

 

Management

Initially, the patient was treated symptomatically by anti-epileptics and analgesics. After the cardio-thoracic and vascular surgeon consultations, we decided to airlift the patient to a higher centre as our hospital was tertiary care and there were no grafts for the urgent repair of the extensive aortic dissection. We intubated the patient for secure transportation. However, we learned that the patient expired in the higher centre before reaching the operating room.

Discussion

Before I shed light on the important part of this discussion, I know that the outcome of this case was unfortunately grave. However, I chose this case because of it.

In this case, the patient had low back pain in her previous hospital visit. However, she was sent home with symptomatic management, implying that it could have been addressed more carefully. She visited our ED one day later, and POCUS let us diagnose the dissection in 15 minutes, which was confirmed by a CT aortogram within 40 minutes. After consultations and finding the available facility, we airlifted the patient to a higher centre for urgent repair, but the patient could not make it to the operating room.     

We all know acute aortic dissection is the most common life-threatening disorder affecting the aorta. Over the first several hours, the mortality rate increase up to 1% per hour; therefore, early intervention is critical (1). In our case, the involvement of bilateral carotid arteries caused seizure-like episodes and altered mental status. Also, studies show that patients with similarly located dissections may experience neck pain, transient ischemic attacks (TIA), cerebral ischemia, transient monocular blindness and subarachnoid haemorrhage (SAH) but not seizure(2). In our case, the global hypo-perfusion caused recurrent TIAs, which resembled seizure-like clinical episodes. That’s why emergency physicians should be vigilant about the underlying causes of seizure-like activities, even if altered mental status similar to postictal state is present, especially if the patient does not have a history of seizures and the complaints are unclear. Keep the aortic dissection in mind as a differential. Also, I cannot stress the use of POCUS in the ED enough. It is a game-changer, and in our case, it detected a lethal disease successfully.

Learning Points

  1. Never ignore back pain that does not subside after adequate pain management.
  2. POCUS is always a game-changer. It saves a lot of time and lives, as in my case.
  3. Seizures or not, you must keep a high suspicion for lethal vascular diseases. Remember the basics: If unclear, go back to history.
  4. Once you confirm an aortic dissection, never delay treatment because time = life.
  5. Never ever send a patient back home unless you are completely sure about the cause of the presenting symptom. Over investigating is ok when compared to under investigating, when it might cost a life.

References and Further Reading

  1. Braverman AC. Acute aortic dissection: clinician update. Circulation. 2010;122(2):184-188. doi:10.1161/CIRCULATIONAHA.110.958975
  2. Debette S, Grond-Ginsbach C, Bodenant M, et al. Differential features of carotid and vertebral artery dissections: the CADISP study. Neurology. 2011;77(12):1174-1181. doi:10.1212/WNL.0b013e31822f03fc
Cite this article as: Naveen Paila, India, "Seizure: Lethal Dissection," in International Emergency Medicine Education Project, November 15, 2021, https://iem-student.org/2021/11/15/seizure-lethal-dissection/, date accessed: May 18, 2022

Question Of The Day #60

question of the day
Which of the following is the most likely cause for this patient’s condition? 

This first-trimester pregnant patient presents with generalized weakness, nausea, and vomiting.  She is hypotensive and tachycardic with no sign of urinary infection on the urinalysis.  The many ketones in the urine indicate the patient has inadequate oral nutrition and is breaking down muscle and adipose tissue for energy.  This is likely related to the persistent vomiting the patient is experiencing.  This patient has hyperemesis, a common condition in the first trimester of pregnancy that is caused by rising levels of beta-human chorionic gonadotropin (BHCG).  Treatment for this patient should include IV hydration and antiemetics.  Admission criteria for these patients includes intractable vomiting despite antiemetic administration, over 10% maternal weight loss, persistent ketone or electrolyte abnormalities despite rehydration, or uncertainty in the diagnosis. 

The fluid losses caused by vomiting in this condition result in hypovolemic shock (Choice B).  Distributive shock (Choice C) is caused by other conditions, like sepsis, anaphylaxis, and neurogenic shock.  A ureteral stone (Choice D) is unlikely as the patient does not report any abdominal, back, or flank pain.  The urinalysis also does not show any hematuria, which is a common sign of a ureteral stone.  Pyelonephritis (Choice A) can cause vomiting and septic shock which can result in hypotension and tachycardia.  However, there is no sign of infection in the urinalysis provided, no fever, and no back or flank pain.  The best answer is choice B.  

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #60," in International Emergency Medicine Education Project, October 22, 2021, https://iem-student.org/2021/10/22/question-of-the-day-60/, date accessed: May 18, 2022

Question Of The Day #59

question of the day
38 - atrial fibrillation

Which of the following is the most likely cause for this patient’s respiratory condition?

This patient presents to the Emergency Department with palpitations, generalized weakness, and shortness of breath after discontinuing all her home medications.  She has hypotension, marked tachycardia, and pulmonary edema (crackles on lung auscultation).  The 12-lead EKG demonstrates atrial fibrillation with a rapid ventricular rate.  This patient is in a state of cardiogenic shock and requires prompt oxygen support, blood pressure support, and heart rate control. 

Pulmonary embolism (Choice A) can sometimes manifest as new atrial fibrillation with shortness of breath and tachycardia, but pulmonary embolism initially causes obstructive shock.  If a pulmonary embolism goes untreated, it can progress to right ventricular failure, pulmonary edema, and cardiogenic shock.  This patient has known atrial fibrillation and stopped all her home medications.  The abrupt medication change is a more likely cause of the patient’s cardiogenic shock.  Dehydration (Choice D) and systemic infection (Choice D) are less likely given the above history of abruptly stopping home maintenance medications.  Untreated cardiac arrythmia (Choice B) is the most likely cause for this patient’s pulmonary edema and cardiogenic shock. 

The chart below details the categories of shock, each category’s hemodynamics, potential causes, and treatments.  

 

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #59," in International Emergency Medicine Education Project, October 15, 2021, https://iem-student.org/2021/10/15/question-of-the-day-59/, date accessed: May 18, 2022

Question Of The Day #58

question of the day
720 - variceal bleeding

Which of the following is the most appropriate next step in management?   

This cirrhotic patient presents to the Emergency Department with epigastric pain after an episode of hematemesis at home.  His initial vital signs are within normal limits.  While waiting in the Emergency Department, his clinical status changes.  The patient has a large volume of hematemesis with hypotension and tachycardia.  This patient is now in hemorrhagic shock from an upper gastrointestinal bleed and requires immediate volume resuscitation.  The most common cause of upper gastrointestinal bleeding is peptic ulcer disease, but this patient’s cirrhosis history and large volume of hematemesis should raise concern for an esophageal variceal bleed.  IV Pantoprazole (Choice D) is a proton pump inhibitor that helps reduce bleeding in peptic ulcers, but it does not provide benefit in esophageal varices.  Volume repletion is also a more important initial step than giving pantoprazole.  IV Ceftriaxone (Choice C) helps reduce the likelihood of infectious complications in variceal bleed patients.  This has a mortality benefit and is a recommended adjunctive treatment.  However, rapid volume resuscitation is a more important initial step.  IV crystalloid fluids, like normal saline (Choice A), are helpful in patients with hypovolemic shock (i.e., dehydration, vomiting), distributive shock (i.e., sepsis, anaphylaxis), and obstructive shock (i.e., tension pneumothorax, etc.).  Hypovolemic shock due to severe hemorrhage (hemorrhagic shock) requires blood products, not crystalloid fluids which can further dilute blood and cause coagulopathy.  Administration of packed red blood cells (Choice B) is the best next step in management in this case.

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #58," in International Emergency Medicine Education Project, October 8, 2021, https://iem-student.org/2021/10/08/question-of-the-day-58/, date accessed: May 18, 2022

Cryptic Shock – Identifying the Unseen (PART 1)

Case Presentation

A 68-year-old man presented to the Emergency Department with complaints of breathing difficulty and fever for three days. The patient is a known diabetic and hypertensive.

After detailed history taking, clinical examination, and radiological workup, the patient was diagnosed with right-sided lobar pneumonia (Community-acquired) and immediately started on intravenous antibiotics. In addition, necessary cultures and blood samples were taken for evaluation.

At the time of presentation, his vitals were HR – 92/min, BP – 130/70mmHg, RR – 30/min, SpO2 – 90% with RA à 96% with 2L O2. He underwent bladder catheterization.

During the 1st hour in the ER, the patient had a very low urine output, which continued for the next few hours. Lactate levels were more than 4mmol/L.

Based on the symptoms, oliguria, and hyperlactatemia, the patient was diagnosed to have sepsis and was initiated on fluid resuscitation. After 2 hours, the patient remained oliguric still, and his BP declined to 120/70mmHg.

After 6 hours, the patient’s BP became 110/60mmHg (MAP – 77). He became anuric and developed altered sensorium. Since he did not meet the criteria of septic shock, he was continued on IV fluids and antibiotics.

After 12 hours, the BP became 80/40mmHg (MAP – 63mmHg) à developed Multiorgan Dysfunction Syndrome. He was then started on vasopressors and mechanical ventilation.

By day 3, the patient further deteriorated and went into cardiac arrest. ROSC was not achieved.

Case Analysis

The treatment initiated was based on protocols like Surviving Sepsis Guidelines and Septic Shock management. So how did the process fail in order to adequately resuscitate this patient? Could something have been done more differently?

The case you read above is a very common scenario. Approximately 30% of the people coming to the ER are hypertensive, and around 10% have diabetes mellitus. They form a huge population, among whom the incidence of any other disease increases their morbidity and early mortality.

Before we delve into the pathology in these patients, let us look at the basic definitions of shock/hypotension.

  • SBP < 90mmHg
  • MAP < 65 mmHg
  • Decrease in SBP > 40mmHg
  • Organ Dysfunction
  • Hyperlactatemia
  • Shock: A state of circulatory insufficiency that creates an imbalance between tissue oxygen supply (delivery) and demand (consumption), resulting in end-organ dysfunction.
  • Septic Shock: Adult patients can be identified using the clinical criteria of hypotension requiring the use of vasopressors to maintain MAP of 65mmHg or greater and having a serum lactate level greater than 2 mmol/L persisting after adequate fluids resuscitation.
  • Cryptic Shock: Presence of hyperlactatemia (or systemic hypoperfusion) in a case of sepsis with normotension.

Based on all the information given above;

  1. what do you think was wrong with our patient?
  2. What kind of shock did he have?
  3. Could we have managed him any other way?
  4. When should we have started inotropes?
  5. Did the fact that he was hypertensive and diabetic have to do with his early deterioration? If so, how?
  6. When did the patient-first develop signs of shock?
  7. What are the different signs and symptoms of shock, and how are they recognized in the ER?

Keep your answers ready… 

Part 2 of Cryptic Shock Series – Vascular Pathology and What is considered ‘Shock’ in Hypertensive patients

Part 3 of Cryptic Shock Series – Individualised BP management

Part 4 of Cryptic Shock Series – Latest Trends

References and Further Reading

  1. Ranzani OT, Monteiro MB, Ferreira EM, Santos SR, Machado FR, Noritomi DT; Grupo de Cuidados Críticos Amil. Reclassifying the spectrum of septic patients using lactate: severe sepsis, cryptic shock, vasoplegic shock and dysoxic shock. Rev Bras Ter Intensiva. 2013 Oct-Dec;25(4):270-8. doi: 10.5935/0103-507X.20130047.
  2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):801-10. doi: 10.1001/jama.2016.0287.
  3. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, Singer M; Sepsis Definitions Task Force. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):775-87. doi: 10.1001/jama.2016.0289.
  4. Education Resources – Sepsis Trust
  5. The Research of Predicting Septic Shock – International Emergency Medicine Education Project (iem-student.org)
  6. Sepsis – International Emergency Medicine Education Project (iem-student.org)
  7. Empiric Antibiotics for Sepsis in the ED Infographics – International Emergency Medicine Education Project (iem-student.org)
  8. Sepsis – An Overview and Update – International Emergency Medicine Education Project (iem-student.org)
Cite this article as: Gayatri Lekshmi Madhavan, India, "Cryptic Shock – Identifying the Unseen (PART 1)," in International Emergency Medicine Education Project, October 4, 2021, https://iem-student.org/2021/10/04/cryptic-shock/, date accessed: May 18, 2022

Question Of The Day #57

question of the day

Which of the following is the most likely cause for this patient’s condition?  

This young female presents with dizziness, fatigue, nausea, generalized abdominal pain, hypotension, tachycardia, and a positive urine pregnancy test.  The anechoic (black) areas on the bedside ultrasound indicate free fluid (blood) in the peritoneal space.  See the image below for clarification. Yellow arrows indicates free fluids.

This patient is in a state of physiologic shock.  Shock is an emergency medical state characterized by cardiovascular or circulatory failure.  Shock prevents peripheral tissues from receiving adequate perfusion, resulting in organ dysfunction and failure.  Shock can be categorized as hypovolemic, distributive, obstructive, or cardiogenic.  The different categories of shock are defined by their underlying cause (i.e., sepsis, hemorrhage, pulmonary embolism, etc.) and their hemodynamics which sometimes overlap.  The diagnosis of shock is largely clinical and supported by the history, vital signs, and physical exam.  Additional studies, such as laboratory investigations, bedside ultrasound, and imaging tests help narrow down the type of shock, potential triggers, and guide management. 

This patient’s condition is caused by a presumed ruptured ectopic pregnancy and intraperitoneal bleeding.  This is considered hypovolemic/hemorrhagic shock (Choice A). The other types of shock in Choices B, C, and D are less likely given the clinical and diagnostic information in the case.  The chart below details the categories of shock, each category’s hemodynamics, potential causes, and treatments.  

 

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #57," in International Emergency Medicine Education Project, October 1, 2021, https://iem-student.org/2021/10/01/question-of-the-day-57/, date accessed: May 18, 2022

Question Of The Day #56

question of the day

Which of the following is the most likely cause of this patient’s condition?

This trauma patient arrives with hypotension, tachycardia, absent unilateral lung sounds, and distended neck veins. This should raise high concern for tension pneumothorax, which is a type of obstructive shock (Choice C). This diagnosis should be made clinically without X-ray imaging. Bedside ultrasound can assist in making the diagnosis by looking for bilateral lung sliding, if available. Treatment of tension pneumothorax should be prompt and includes needle decompression followed by tube thoracostomy. Other types of shock outlined in Choices A, B, and D do not fit the clinical scenario with information that is given.

Recall that shock is an emergency medical state characterized by cardiovascular or circulatory failure. Shock prevents peripheral tissues from receiving adequate perfusion, resulting in organ dysfunction and failure. Shock can be categorized as hypovolemic, distributive, obstructive, or cardiogenic. The different categories of shock are defined by their underlying cause (i.e., sepsis, hemorrhage, pulmonary embolism, etc.) and their hemodynamics which sometimes overlap. The diagnosis of shock is largely clinical and supported by the history, vital signs, and physical exam. Additional studies, such as laboratory investigations, bedside ultrasound, and imaging tests help narrow down the type of shock, potential triggers, and guide management. The chart below details the categories of shock, each category’s hemodynamics, potential causes, and treatments.

 

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #56," in International Emergency Medicine Education Project, September 24, 2021, https://iem-student.org/2021/09/24/question-of-the-day-56/, date accessed: May 18, 2022

Question Of The Day #55

question of the day
738.2 - STEMI
Which of the following is the most likely cause for this patient’s condition?  

This patient presents with chest pressure at rest and an anterior ST segment elevation myocardial infraction (STEMI) seen on 12-lead EKG.  This patient should be given aspirin, IV fluids to increase the preload status, and receive immediate coronary reperfusion therapy.  This patient’s hypotension is likely due to infarction of the left ventricle causing poor cardiac output (Choice D).  This is known as cardiogenic shock.  The patient has been vomiting, but the acute onset of symptoms and STEMI on EKG make poor cardiac output (Choice D) more likely than hypovolemia (Choice A) as the cause for the patient’s condition.  Systemic infection (Choice B) and pulmonary embolism (Choice C) are also less likely given the clinical information in the case and the STEMI on EKG.  The best answer is Choice D.  Please see the chart below for further detailing of the different types of shock.   

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #55," in International Emergency Medicine Education Project, September 17, 2021, https://iem-student.org/2021/09/17/question-of-the-day-55/, date accessed: May 18, 2022

Question Of The Day #54

question of the day
Which of the following is the most likely cause for this patient’s condition?

This patient sustained significant blunt trauma to the chest, presents to the Emergency Department with hypotension, tachycardia, a large chest ecchymosis, and palpable sternal crepitus.  The ultrasound image provided shows a subxiphoid view of the heart with a large pericardial effusion.  In the setting of trauma, this should be assumed to be a hemopericardium.  This patient has cardiac tamponade, which is considered a type of obstructive shock (Choice C).  Treatment includes IV hydration to increase preload, bedside pericardiocentesis, and ultimately, a surgical cardiac window performed by cardiothoracic surgery.  The other shock types (Choices A, B, D) do not describe this patient’s presentation.  Please see the chart below for further description of the different shock types and therapies.

 

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #54," in International Emergency Medicine Education Project, September 10, 2021, https://iem-student.org/2021/09/10/question-of-the-day-54/, date accessed: May 18, 2022

Question Of The Day #53

question of the day

Which of the following is the most likely cause for this patient’s condition?

This patient endured a high-speed motor vehicle accident, arrives with hypotension and bradycardia, and has a C6 vertebral body fracture on imaging.  These details support a diagnosis of neurogenic shock, a type of distributive shock.

Shock is an emergency medical state characterized by cardiovascular or circulatory failure.  Shock prevents peripheral tissues from receiving adequate perfusion, resulting in organ dysfunction and failure.  Shock can be categorized as hypovolemic, distributive, obstructive, or cardiogenic.  The different categories of shock are defined by their underlying cause (i.e., sepsis, hemorrhage, pulmonary embolism, etc.) and their hemodynamics which sometimes overlap.  The diagnosis of shock is largely clinical and supported by the history, vital signs, and physical exam.  Additional studies, such as laboratory investigations, bedside ultrasound, and imaging tests help narrow down the type of shock, potential triggers, and guide management.  The chart below details the categories of shock, each category’s hemodynamics, potential causes, and treatments.  

Neurogenic shock is caused by spinal cord damage above the T6 level.  Unlike other types of shock, neurogenic shock is characterized by hypotension and bradycardia (not tachycardia).  These vital sign abnormalities are caused by damage to sympathetic nervous system (Choice C).  Neurogenic shock has decreased systemic vascular resistance (warm extremities), not increased systemic vascular resistance (cool extremities) (Choice A).  Occult hemorrhage (Choice B) is always a concern in a trauma patient.  However, this would present with findings of hypovolemic/hemorrhagic shock (tachycardia, hypotension, cool extremities).  Tension pneumothorax (Choice D) is also unlikely as the patient has clear bilateral lung sounds on exam.  The best answer is Choice C.

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #53," in International Emergency Medicine Education Project, September 3, 2021, https://iem-student.org/2021/09/03/question-of-the-day-53/, date accessed: May 18, 2022

Question Of The Day #52

question of the day

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient has anaphylactic shock, which falls under the category of distributive shock.  Anaphylactic shock is an acutely life-threatening type of allergic reaction that if left untreated, can progress to airway edema, asphyxiation, and death.  Exposure to a known or unknown allergen is the trigger for anaphylaxis.  Diagnosis of this condition requires the below criteria to be met:

  1. Acute onset of skin or mucosal changes (i.e., urticaria, tongue or lip swelling) AND hypotension or respiratory compromise (i.e., wheezing).

OR

  1. Dysfunction of two or more body systems after exposure to a presumed allergen:
    1. Skin/mucosa (i.e., urticaria, swelling of tongue or lips)
    2. Pulmonary (i.e., wheezing)
    3. Cardiovascular (i.e., hypotension)
    4. Gastrointestinal (i.e., vomiting or diarrhea)
    5. End-organ dysfunction

Management of anaphylaxis requires proper evaluation of the patient’s airway, respiratory status, and hemodynamics (“ABCs”).  Mainstays of therapy are intramuscular epinephrine (0.3mg in adults) and IV hydration.  Administration of epinephrine is a time sensitive and life-saving intervention.  Antihistamines, nebulized albuterol or salbutamol, and steroids are additional therapies that are commonly given.  Steroids are thought to prevent recurrent anaphylactic reactions, however, there is little data to support this.  Patients are typically monitored for 4-6 hours after administration of epinephrine to observe for changes in clinical status or the need for additional doses of epinephrine.  Patients who remain stable or improve after this observation period are able to be discharged home with a prescription for an epinephrine injector in the event of future anaphylaxis episodes. 

Intravenous normal saline (Choice A) and diphenhydramine (Choice B) are important therapies to administer in this patient, but intramuscular epinephrine (Choice C) is the most time-sensitive initial therapy to administer.  Without treatment, airway edema may progress and require endotracheal intubation (Choice D).  The patient’s clear voice and lack of stridor indicate that the patient does not need immediate intubation. 

Correct Answer: C

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #52," in International Emergency Medicine Education Project, August 27, 2021, https://iem-student.org/2021/08/27/question-of-the-day-52/, date accessed: May 18, 2022