The Kawasaki Disease Enigma Continues 150 years Later

kawasaki disease

Kawasaki disease (KD), or mucocutaneous lymph nodes syndrome is an immune-mediated inflammation in the walls of medium-sized arteries throughout the body. It’s complications result in the coronary arteries expanding, heart attacks, and premature death.

As the leading cause of heart disease in North American and Japanese children, KD continues to bewilder clinicians and researchers – even in the midst of a global pandemic. Possible links to SARS-CoV2 has even stirred uneasiness in patients, and physicians making diagnoses.

Beginning in Victorian-era England, a young boy presented to the doctor’s office with symptoms suggestive of scarlet fever; however, noticing heart disease in this child was just baffling. Despite being unaware of this rare disease, it was beyond physicians at the time; since then, progress has been limited as clinicians still fail to comprehend the disease’s root cause.

Dating back to 1874, KD was discovered by Samuel Gee while he was dissecting the cadaver of a seven-year-old boy.

He noticed something strange, “The pericardium was natural. The heart natural in size, and the valves healthy. The coronary arteries were dilated into aneurysms at three places, namely, at the apex of the heart a small aneurysm the size of a pea; at the base of the right ventricle, close to the tip of the right auricular appendix, and near to the mouth of one of the coronary arteries, another aneurysm of the same size; and at the back of the heart, at the base of the ventricles, and in the sulcus between the ventricles, a third aneurysm the size of a horse bean. These aneurysms contained small recent clots, quite loose. The aorta near the valves, and the aortic cusp of the mitral valve, presented specks of atheroma.

From his autopsy, evident was that Gee found aneurysms in the coronary arteries running across the surface of the boy’s heart. He then placed the specimen in a jar and provided it to the Barts Pathology Museum in London. Little did he know, that his specimen marked evidence of the earliest recorded case of KD and sparked worldwide medical curiosity. Unfortunately, when physicians 100 years later were hoping to retrieve samples from the specimen containing the boy’s heart, they were informed that it was missing.

A few years later, the disease was recognized in 1967 by the Japanese physician, Tomikasu Kawasaki. Although some researchers claimed the virus was unknown, others stated KD resulted from a bacterial or fungal toxin. The windborne theory suggested that the disease was seasonal, and as such, the direction of the swaying wind played a role in infection. Others stated that since children’s immune systems are still developing and since they have just lost the protective antibodies from their mothers, they are susceptible to infection. Therefore, in Asian American household’s diets rich in soy put Asian children at greater risk due to the isoflavones. In the 1980s, the Center for Disease Control and Prevention (CDC) suspected chemicals as the cause of KD, inferring that disease stems from agents that trigger an overreaction of the patient’s immune system. No one knew exactly what the mechanism or cause of KD was, although many scientists speculated some theories.

Over the last decade, significant progress toward understanding the pathogenesis, history, and therapeutic interventions of KD has been fruitful. Treatment aimed at the intravenous infusion of gamma globulin antibodies derived from the plasma of blood donations has helped children recover. In contrast, other therapies of corticosteroids for immunoglobulin-resistant patients and tumor inhibitors such as etanercept, infliximab, and cyclosporin A have been other medications providing relief.

The most significant clinical debate was over the possible link between the rash and the cardiac complications seen in Asian American children. Factors responsible for KD were introduced into Japan after World War II and re-emerged in a more virulent form spreading through the industrialized Western world. Advancements in medicine, improvements in healthcare, and, notably, the use of antibiotics reduced the burden of rash and fever illnesses significantly allowing KD to be recognized as a distinct clinical entity.

Nonetheless, the enigma pervades even during the COVID19 pandemic; this time, more pressing as the ever-elusive cause of KD that troubles children’s hearts affects physicians’ sleep and worries parents’ minds. Although the story of Kawasaki disease began decades ago when a young boy’s heart was locked inside a glass specimen, its ending is still being crafted. By the time the heart is found again at the museum, and placed safely for visitors treasuring ancient history, what further knowledge and progress will the scientific community have achieved? How far will humanity have come to find answers to KD and fill in the perplexing missing piece of the puzzle?

For now, there are no answers, but the enigma continues…

Cite this article as: Leah Sarah Peer, Canada, "The Kawasaki Disease Enigma Continues 150 years Later," in International Emergency Medicine Education Project, July 24, 2020, https://iem-student.org/2020/07/24/kawasaki-disease-enigma-continues/, date accessed: April 19, 2024

References and Further Reading

Is this AAA going to be ruptured?

AAA rupture

Abdominal Aortic Aneurysm (AAA)

Lit Sin Quek

A 75-year-old obese man comes to the emergency department. He has history COPD, hypertension. He is a smoker and on regular follow-up with primary care. He describes sudden onset severe flank and back pain for past 2 hours. He denies any chest pain or dyspnea. He informs the physician about his chronic abdominal pain. His initial vital signs are HR 98 bpm, RR 24/min, BP 190/105 mmHg, T 36.9C. His examination revealed mild abdominal pain without rigidity or rebound tenderness. Bedside ultrasonography performed and the result is shown on the side.

What is the risk of rupture?

Touch Me

Risk of Rupture

increases with emphysema, smoking, hypertension. Regarding Powell’s (2003, 2007) study aneurisms above 5.5 cm have 9.4% to 32.4% rupture risk in one year.
Answer