Question Of The Day #29

question of the day
qod29
842 - Wide QRS complex tachycardia

Which of the following is the most appropriate next step in management for this patient?

This patient presents to the emergency department with seven days of severe vomiting, diarrhea, tachycardia, and borderline hypotension. The clinician should be concerned about dehydration and potential electrolyte derangements induced by the vomiting and diarrhea. Certain electrolyte derangements can put a patient at risk for cardiac dysrhythmias, so ordering a 12-lead EKG is an important step in evaluating any patient with a potential electrolyte disturbance. Dangerous electrolyte disturbances that can predispose a patient to cardiac dysrhythmias include hyperkalemia, hypokalemia, hypomagnesemia, and hypocalcemia. Signs of hyperkalemia on the EKG include peaked T waves, absent or flattened P waves, widened QRS complexes, or a sine wave morphology. Low potassium, magnesium, and calcium can all prolong the QT interval and predispose the patient to polymorphic ventricular tachycardia (Torsades de Pointes). Hypokalemia on EKG may also be associated with a U wave, which is an upward wave that follows the T wave.

This patient’s 12-lead EKG shows a wide-complex tachycardia with QRS complex “twisting” around the isoelectric line and varying QRS amplitudes. These EKG signs, along with the inferred history of severe electrolyte abnormalities, support a diagnosis of Torsades de Pointes (TdP). Another risk factor for TdP is a history of congenital prolonged QT syndromes. Similar to monomorphic ventricular tachycardia, TdP should always be treated with electrical cardioversion if there are any signs of instability (i.e., altered mental status, SBP <90mmHg). A pulseless patient with TdP always necessitates unsynchronized cardioversion, also known as defibrillation. This patient may have briefly syncopized or potentially underwent cardiac arrest. Intravenous Amiodarone (Choice A) and Procainamide (Choice B) are contraindicated in TdP as both of these agents can further prolong the QT interval. These agents can be used in a stable patient with monomorphic ventricular tachycardia. Intravenous Ciprofloxacin (Choice C) is a quinolone antibiotic that is useful for treating infections from gram-negative bacteria. This may be beneficial for this patient, especially if there is a concern for bacterial gastroenteritis. However, quinolone antibiotics also can prolong the QT interval, and this medication will not acutely stabilize this patient. Intravenous Magnesium Sulfate (Choice D) shortens the QT interval and is the preferred therapy for a TdP patient with a pulse. Correct Answer: D

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #29," in International Emergency Medicine Education Project, March 5, 2021, https://iem-student.org/2021/03/05/question-of-the-day-29/, date accessed: August 5, 2021

Question Of The Day #28

question of the day
qod28

EKG#1

710 - hyperkalemia

EKG#2

855 - bradycardia

Which of the following is the most likely underlying cause for this patient’s condition?

This patient presents to the emergency department with vague and nonspecific symptoms of nausea, fatigue, and palpitations. The initial EKG (EKG #1) demonstrates a wide-complex tachycardia (QRS >120msec) with a regular rhythm. The differential diagnosis for wide-complex tachyarrhythmias include ventricular tachycardia (monomorphic ventricular tachycardia), torsades de pointes (polymorphic ventricular tachycardia), coarse ventricular fibrillation, supraventricular tachycardias with aberrancy (i.e. underlying Wolf Parkinson White Syndrome or Ventricular Bundle Branch Block), electrolyte abnormalities (i.e., Hyperkalemia), and from medications (i.e., Na channel blocking agents). If the history is unclear or the patient shows signs of instability, Ventricular tachycardia should always be the assumed tachyarrhythmia. This is managed with electrical cardioversion or with medications (i.e., amiodarone, procainamide, lidocaine), depending on the patient’s symptoms and hemodynamic stability.

The prior EKG for the patient (EKG #2) is helpful in showing that the patient does not have a wide QRS complex at baseline. There also are no EKG signs of Wolf Parkinson White Syndrome (Choice B) on EKG #2, making this choice incorrect. Signs of this cardiac pre-excitation syndrome on EKG include a shortened PR interval and a delta wave (slurred upstroke at the beginning of the QRS complex). Anxiety (Choice D) can cause sinus tachycardia and be a symptom associated with any arrhythmia, but it is not the underlying cause for this patient’s bizarre wide-complex tachydysrhythmia. On a closer look, the patient’s EKG (EKG #1) demonstrates tall, peaked T waves in the precordial leads. This supports a diagnosis of hyperkalemia. Other signs of hyperkalemia on EKG include flattened or absent P waves, widened QRS complexes, or a sine wave morphology. A common underlying cause of hyperkalemia is renal disease (Choice C). Ischemic heart disease (Choice A) is a common underlying cause for ventricular tachycardia. Ventricular tachycardia is less likely in this case given the presence of peaked T waves and the lack of fusion beats, capture beats, or signs of AV dissociation on the 12-lead EKG. Correct Answer: C 

References

  • Brady W.J., & Glass III G.F. (2020). Cardiac rhythm disturbances. Tintinalli J.E., Ma O, Yealy D.M., Meckler G.D., Stapczynski J, Cline D.M., & Thomas S.H.(Eds.), Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 9e. McGraw-Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=2353&sectionid=218687685
  • Burns, E. (2020). Ventricular Tachycardia – Monomorphic VT. Life in The Fast Lane. Retrieved from https://litfl.com/ventricular-tachycardia-monomorphic-ecg-library/

Cite this article as: Joseph Ciano, USA, "Question Of The Day #28," in International Emergency Medicine Education Project, February 26, 2021, https://iem-student.org/2021/02/26/question-of-the-day-28/, date accessed: August 5, 2021

Question Of The Day #27

question of the day
qod27
756.1 - palpitation - SOB

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient has a narrow-complex, regular tachycardia that is causing the sensation of palpitations. The clinical history, rapid heart rate, and 12-lead EKG provide enough information to diagnose this patient with supraventricular tachycardia, also known as “SVT.” Supraventricular tachycardias refer to a broad range of arrhythmias, including sinus tachycardia, atrial fibrillation, atrial flutter, multifocal atrial tachycardia, and AV nodal re-entry tachycardia. This scenario specifically depicts an AV nodal re-entry tachycardia (AVNRT). AVNRT is a common type of SVT that can occur spontaneously or is triggered by sympathomimetic agents (i.e., cocaine, amphetamines), caffeine, alcohol, exercise, or beta-2 agonists using in asthma treatment (i.e., albuterol, salbutamol). AVNRTs are narrow-complex tachycardias with rates that range from 120-280bpm. P waves are typically absent in AVNRTs, but rarely they may be present as retrograde inverted P waves located immediately before or after the QRS complex. Symptoms experienced by the AVNRT patient may include pre-syncope, syncope, dizziness, palpitations, anxiety, or mild shortness of breath. Patients with AVNRTs are more likely to be young and female over male.

QRS complexes in AVNRTs are often narrow (<120msec), however, wide QRS complexes may be present in AVNRTs if there is a concurrent bundle branch block or Wolff-Parkinson White Syndrome. AVNRTs are often stable and do not require electric cardioversion. Signs that indicate instability and necessitate cardioversion are hypotension (SBP <90mmHg), altered mental status, or ischemic chest pain (more common if known history of ischemic heart disease). This patient lacks all of these signs and symptoms.

Treatment of AVNRT focuses on restoring the patient to normal sinus rhythm, which leads to resolution of symptoms. First-line medications for AVNRTs are short-acting AV nodal blocking agents, like adenosine (Choice A). Beta-blockers or calcium channel blockers act as second-line agents for patients who do not respond to adenosine. Metoprolol is a beta-blocker (Choice C) and Diltiazem is a calcium channel clocker (Choice D). Prior to any medications, vagal maneuvers should always be attempted first in a stable patient with AVNRT. The Valsalva maneuver (Choice B), or “bearing down,” is a commonly used vagal maneuver in the termination of AVNRTs. Other vagal maneuvers include the carotid massage or the Diving reflex (place bag of ice and water on face). Correct Answer: B

References

  • Brady W.J., & Glass III G.F. (2020). Cardiac rhythm disturbances. Tintinalli J.E., Ma O, Yealy D.M., Meckler G.D., Stapczynski J, Cline D.M., & Thomas S.H.(Eds.), Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 9e. McGraw-Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=2353&sectionid=218687685
  • Burns, E. (2020). Supraventricular Tachycardia (SVT). Life in the Fast Lane. Retrieved from https://litfl.com/supraventricular-tachycardia-svt-ecg-library/

Cite this article as: Joseph Ciano, USA, "Question Of The Day #27," in International Emergency Medicine Education Project, February 19, 2021, https://iem-student.org/2021/02/19/question-of-the-day-27/, date accessed: August 5, 2021

Question Of The Day #26

question of the day
qod26
38 - atrial fibrillation

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient presents to the emergency department with palpitations, a narrow complex tachycardia (<120msec), and an irregularly irregular rhythm. A close look at this patient’s EKG reveals the absence of discrete P waves and QRS complexes that are spaced at varying distances from each other (most apparent in lead V6). These signs support a diagnosis of Atrial Fibrillation, or “AFib.” Atrial Fibrillation is an arrhythmia characterized by an irregularly irregular rhythm, the absence of P waves with a flat or undulating baseline, and narrow QRS complexes. Wide-QRS complexes may be present in AFib if there is a concurrent bundle branch block or Wolff-Parkinson White Syndrome. AFib is caused by the electric firing of multiple ectopic foci in the atria of the heart. This condition is triggered by a multitude of causes, including ischemic heart disease, valvular heart disease, dilated or hypertrophic cardiomyopathies (likely related to this patient’s congestive heart failure history), sepsis, hyperthyroidism, excess caffeine or alcohol intake, pulmonary embolism, and electrolyte abnormalities.

The main risk in AFib is the creation of thrombi in the atria as they fibrillate, resulting in emboli that travel to the brain and cause a stroke. The CHA2DS2VASc scoring system is used to risk stratify patients and determine if they require anticoagulation to prevent against thrombo-embolic phenomenon (i.e. stroke). This patient has a high CHA2DS2VASc score, so she would require anticoagulation. In addition to anticoagulation, A fib is treated with rate control (i.e. beta blockers or calcium channel blockers), rhythm control (i.e. anti-arrhythmic agents), or electrical cardioversion. Electrical cardioversion (choice A) is typically avoided when symptoms occur greater than 48 hours, since the risk of thrombo-emboli formation is higher in this scenario. An exception to this would be a patient with “unstable” AFib. Signs of instability in any tachyarrhythmia are hypotension, altered mental status, or ischemic chest pain. This patient lacks all of these signs and symptoms. Although this patient lacks signs of instability, this patient’s marked tachycardia should be addressed with medical treatment. General observation (Choice C) is not the best choice for this reason. Intravenous adenosine (Choice D) is the best choice for a patient with supraventricular tachycardia (SVT). This is a narrow-complex AV nodal re-entry tachycardia with rates that range from 120-280bpm. SVT also lacks discrete P waves. A key factor that differentiates A fib from SVT is that SVT has a regular rhythm, while AFib has an irregular rhythm. Intravenous metoprolol (Choice B) is the best treatment option listed in order to decrease the patient’s heart rate.

References

  • Brady W.J., & Glass III G.F. (2020). Cardiac rhythm disturbances. Tintinalli J.E., Ma O, Yealy D.M., Meckler G.D., Stapczynski J, Cline D.M., & Thomas S.H.(Eds.), Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 9e. McGraw-Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=2353&sectionid=218687685
  • Burns, E. (2020) Atrial Fibrillation. Life in The Fast Lane. Retrieved from https://litfl.com/atrial-fibrillation-ecg-library/

 

Cite this article as: Joseph Ciano, USA, "Question Of The Day #26," in International Emergency Medicine Education Project, February 12, 2021, https://iem-student.org/2021/02/12/question-of-the-day-26/, date accessed: August 5, 2021

The EKG Case of No Symptoms

the ecg case of no symptoms

Case Presentation

A 52-year-old woman presents to the ED from an outpatient dialysis center with a rather vague history. She has no symptoms and feels normal, but she was told something “was either too low or too high” on her vital signs at dialysis, so dialysis staff did not perform her scheduled dialysis session. No one had called ahead to alert the emergency department, and the patient had driven herself to the ED, as she was instructed. Vitals show a normal temperature, respiratory rate, oxygen saturation, blood pressure of 102/47 mm Hg, and a heart rate of 138 beats per minute. The physical exam is normal besides a mild regular tachycardia and a working AV dialysis fistula on the right arm. EKG is done, and a representative portion is shown below:

EKG from the prior year is shown for comparison.

How would you interpret the first EKG, and what are your next steps?

Discussion

While you are thinking, I will discuss a few of my practical observations from working in the pit. I want to focus not so much on the diagnosis but on working with these types of scenarios.

Treat the patient and not the chief complaint, vitals, labs, EKGs, studies, or referral information.

When they are feeling great and have no symptoms, they are feeling great and have no symptoms! Your nurses will not necessarily think this way, but one does not feel great while having a real STEMI apparent on the triage EKG. So what is it then, if the patient is here for a contact lens stuck in their eye, but has an EKG STEMI? Worst case – a prior STEMI that never corrected or evolved on the EKG. A ventricular aneurysm? Leads misplaced? Did your EKG tech do an EKG on themselves? A silent MI can occur, but an incidental STEMI is unlikely. 

Of course, the patient has to be alert, competent, and not intoxicated. They should not be lying about or hiding their symptoms and should not have a secondary interest like the need to make it to a daughter’s wedding - live or die. The easiest thing is to ask directly.

What is the rhythm's rate doing when it is left alone?

Afibs and MATs will tend to vary greatly in the second to second heart rate, sinus tachycardias will fluctuate some, while A-flutters and SVTs will tend to stick to a single number no matter what you do and no matter if the patient is walking, talking, or snoozing. Stable Vtachs will depend on a number of factors like being monomorphic or polymorphic – but we are talking about narrow QRS dysrhythmias or ones with an obvious bundle. 

So if you cannot tell from the EKG – observe what the thing does while left alone. As long as the patient is otherwise stable or has had symptoms for a while, you have some time.

Adenosine – not just for SVT conversion

“SVT = adenosine” should not be an automatic equation. First of all, there are contraindications to adenosine based on past history or current medications taken. But adenosine can also be used to “stretch out” weird or equivocal fast rhythms to make flutter waves or hidden P waves come out, so you can see and diagnose the arrhythmia vs. sinus. 

You have to have continuous EKG recording going or printing the monitor strip to spot the temporary effect.

Hypotension + tachy-dysrhythmia: does not necessarily add up to Joules.

The textbook mantra of shocking any dysrhythmia associated with hypotension does not hold up in reality. In reality, you will find that most of your Afibs with a rapid response, your new-onset atrial flutters and your SVTs will have a lousy blood pressure: systolic of 80s and 90s are almost to be expected, and may even dip down to 70s on occasion. It also depends on a prior BP baseline, if the person is petite or dehydrated. But if the patient is mentating well and is not suffocating or experiencing crushing chest pain with diaphoresis, please don’t feel like you have to shock them. The body is not used to the new arrhythmia, and the rapid rate compromises the cardiac output. 

Yes, you can still use your rate and rhythm controllers. Give the patient a gentle fluid bolus if you must. Of course, pacer pads do have to be on ahead of time.

Be afraid of shocking dialysis patients. Check electrolytes.

Hypotension with normal mentation is much better than a PEA arrest. Shocking extremes of electrolyte and acid/base abnormalities, whether due to TCA and other overdoses or in dialysis patients, will give you exactly that. This is especially true for the so-called “slow-X” arrhythmias: slow Afib, slow SVT, or even V-slow (Vtach with a rate of 130) that dialysis patients like to present in. 

Just like airplane travel in transportation, electricity is in general the safest rhythm conversion strategy. But there are exceptions, and you only need to crash once.

A-flutter and the stuck rate of 150

You already know this, but just as a reminder. If the rate is a steady 150, plus or minus, and it is stuck there, you should think of atrial flutter. 

Even if you do not see obvious classic flutter waves, there is a high chance of 2:1 conduction. In this case, I thought of it. Fortunately, it did not think of me.

Adenosine (again)….the 6, the 12…the 24??

Sometimes adenosine is not pushed correctly, but sometimes it just does not work or only works for a few seconds. Sometimes the patient’s Mom knows best what works, so you should listen. Sometimes the last time it was used, the patient really did feel like they were going to die – so they do not ever want it again. Ever. That you should try 6mg, then 12mg, then stop is generally true, but it is also a dead-end. What is your back up plan? Electricity? In the past I have given the doses in reverse, combined 6mg with the Valsalva maneuver and had given a preemptive beta-blocker or calcium channel blocker dose 10-15 minutes before adenosine to massage a stubborn heart into adenosine submission. It is ok to experiment a little. Another practical point – how much does your ED freak an SVT patient out while he or she is being triaged and roomed? I still do not completely understand why an SVT tends to be rushed up in the same fashion as a STEMI with cardiogenic shock and bradycardia, judging from staff adrenaline levels. 

Calm the patient down, turn the lights off and let them change. It's like a kid with croup. Remember, it is lack of the sympathetic influx that we want, not an excess. Otherwise, why try the Valsalva at all? Has anyone attempted a stellate ganglion block Vfib-style for a refractory SVT? An overkill, I know….but could be fun, and practice for the real deal.

Aren’t all AVNRTs verapamil sensitive?

Years ago, in my first year of solo practice, I had a case of a refractory SVT in a young teenager, which a pediatric cardiologist consulting by phone called a “verapamil-sensitive AVNRT” based on the EKG alone. I was impressed. Hours later, I decided to flash my newly acquired cool knowledge and relayed the same to my in-house cardiologist, who looked at me with a grin and a raised eyebrow and said, “Anthony, all AVNRTs are verapamil sensitive”. At that time, I was also sensitive, and so my feelings were hurt. Lately I have gotten into the habit of treating my SVTs with diltiazem – as a purer verapamil relative. With generally good results and no need to stand in front of the patient during administration by the nurse. 

The bottom line is – you have choices. Especially, if the patient is already on a beta-blocker or a calcium channel blocker, give them a beta or a calcium blocker IV, see what happens.

Case Concluded

Despite a single nadir of blood pressure of 75 systolic, the rest holding steadily in the high 90s, the patient received a single dose of IV diltiazem and a small IV fluid bolus. Labs reviewed prior showed normal potassium, calcium, sodium, magnesium and the rest of them. Her average heart rate reduced to about 106 and a repeat EKG is shown, accidentally capturing an event: 

She, of course, had a “verapamil sensitive” SVT. The patient’s new right bundle block had also improved to an incomplete, proving to be either SVT- or rate-related. The patient had never experienced any symptoms while in the ED. She was observed for a short time, scheduled for an out-of-sequence dialysis the next day and discharged home with a normal heart rate. I guess, in this case, we did treat the EKG and not the patient.

Cite this article as: Anthony Rodigin, USA, "The EKG Case of No Symptoms," in International Emergency Medicine Education Project, October 26, 2020, https://iem-student.org/2020/10/26/the-ekg-case-of-no-symptoms/, date accessed: August 5, 2021

Want to read more, take a look this post from September

Shock Index

A 57-year-old male presented to the ED with severe abdominal pain for 1 day. No allergies or significant past medical history. His vitals are: Temp 37.6 Celsius, BP 100/55, HR 110/min, RR 20/min and O2 Saturation is 99% on room air. 

What level of care does this patient require?

To learn more about it, read chapters below.

Read "Shock" Chapter

Read "Scores" Chapter

Quick Read

Shock Index

SHOCK INDEX (SI) = Heart Rate / Systolic Blood Pressure

Application

SI can be used to identify patients needing a higher level of care despite vital signs that may not appear strikingly abnormal. This index is a sensitive indicator of left ventricular dysfunction and can become elevated following a reduction in left ventricular stroke work.

Interpretation

The answer to the above clinical scenario: By applying the above equation, (110/100 = 1.1), this patient has a high shock index and requires a high level of care.

To learn more about it, read chapters below.

Read "Shock" Chapter

Read "Scores" Chapter