Question Of The Day #28

question of the day
qod28

EKG#1

710 - hyperkalemia

EKG#2

855 - bradycardia

Which of the following is the most likely underlying cause for this patient’s condition?

This patient presents to the emergency department with vague and nonspecific symptoms of nausea, fatigue, and palpitations. The initial EKG (EKG #1) demonstrates a wide-complex tachycardia (QRS >120msec) with a regular rhythm. The differential diagnosis for wide-complex tachyarrhythmias include ventricular tachycardia (monomorphic ventricular tachycardia), torsades de pointes (polymorphic ventricular tachycardia), coarse ventricular fibrillation, supraventricular tachycardias with aberrancy (i.e. underlying Wolf Parkinson White Syndrome or Ventricular Bundle Branch Block), electrolyte abnormalities (i.e., Hyperkalemia), and from medications (i.e., Na channel blocking agents). If the history is unclear or the patient shows signs of instability, Ventricular tachycardia should always be the assumed tachyarrhythmia. This is managed with electrical cardioversion or with medications (i.e., amiodarone, procainamide, lidocaine), depending on the patient’s symptoms and hemodynamic stability.

The prior EKG for the patient (EKG #2) is helpful in showing that the patient does not have a wide QRS complex at baseline. There also are no EKG signs of Wolf Parkinson White Syndrome (Choice B) on EKG #2, making this choice incorrect. Signs of this cardiac pre-excitation syndrome on EKG include a shortened PR interval and a delta wave (slurred upstroke at the beginning of the QRS complex). Anxiety (Choice D) can cause sinus tachycardia and be a symptom associated with any arrhythmia, but it is not the underlying cause for this patient’s bizarre wide-complex tachydysrhythmia. On a closer look, the patient’s EKG (EKG #1) demonstrates tall, peaked T waves in the precordial leads. This supports a diagnosis of hyperkalemia. Other signs of hyperkalemia on EKG include flattened or absent P waves, widened QRS complexes, or a sine wave morphology. A common underlying cause of hyperkalemia is renal disease (Choice C). Ischemic heart disease (Choice A) is a common underlying cause for ventricular tachycardia. Ventricular tachycardia is less likely in this case given the presence of peaked T waves and the lack of fusion beats, capture beats, or signs of AV dissociation on the 12-lead EKG. Correct Answer: C 

References

  • Brady W.J., & Glass III G.F. (2020). Cardiac rhythm disturbances. Tintinalli J.E., Ma O, Yealy D.M., Meckler G.D., Stapczynski J, Cline D.M., & Thomas S.H.(Eds.), Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 9e. McGraw-Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=2353&sectionid=218687685
  • Burns, E. (2020). Ventricular Tachycardia – Monomorphic VT. Life in The Fast Lane. Retrieved from https://litfl.com/ventricular-tachycardia-monomorphic-ecg-library/

Cite this article as: Joseph Ciano, USA, "Question Of The Day #28," in International Emergency Medicine Education Project, February 26, 2021, https://iem-student.org/2021/02/26/question-of-the-day-28/, date accessed: February 28, 2021

Question Of The Day #27

question of the day
qod27
756.1 - palpitation - SOB

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient has a narrow-complex, regular tachycardia that is causing the sensation of palpitations. The clinical history, rapid heart rate, and 12-lead EKG provide enough information to diagnose this patient with supraventricular tachycardia, also known as “SVT.” Supraventricular tachycardias refer to a broad range of arrhythmias, including sinus tachycardia, atrial fibrillation, atrial flutter, multifocal atrial tachycardia, and AV nodal re-entry tachycardia. This scenario specifically depicts an AV nodal re-entry tachycardia (AVNRT). AVNRT is a common type of SVT that can occur spontaneously or is triggered by sympathomimetic agents (i.e., cocaine, amphetamines), caffeine, alcohol, exercise, or beta-2 agonists using in asthma treatment (i.e., albuterol, salbutamol). AVNRTs are narrow-complex tachycardias with rates that range from 120-280bpm. P waves are typically absent in AVNRTs, but rarely they may be present as retrograde inverted P waves located immediately before or after the QRS complex. Symptoms experienced by the AVNRT patient may include pre-syncope, syncope, dizziness, palpitations, anxiety, or mild shortness of breath. Patients with AVNRTs are more likely to be young and female over male.

QRS complexes in AVNRTs are often narrow (<120msec), however, wide QRS complexes may be present in AVNRTs if there is a concurrent bundle branch block or Wolff-Parkinson White Syndrome. AVNRTs are often stable and do not require electric cardioversion. Signs that indicate instability and necessitate cardioversion are hypotension (SBP <90mmHg), altered mental status, or ischemic chest pain (more common if known history of ischemic heart disease). This patient lacks all of these signs and symptoms.

Treatment of AVNRT focuses on restoring the patient to normal sinus rhythm, which leads to resolution of symptoms. First-line medications for AVNRTs are short-acting AV nodal blocking agents, like adenosine (Choice A). Beta-blockers or calcium channel blockers act as second-line agents for patients who do not respond to adenosine. Metoprolol is a beta-blocker (Choice C) and Diltiazem is a calcium channel clocker (Choice D). Prior to any medications, vagal maneuvers should always be attempted first in a stable patient with AVNRT. The Valsalva maneuver (Choice B), or “bearing down,” is a commonly used vagal maneuver in the termination of AVNRTs. Other vagal maneuvers include the carotid massage or the Diving reflex (place bag of ice and water on face). Correct Answer: B

References

  • Brady W.J., & Glass III G.F. (2020). Cardiac rhythm disturbances. Tintinalli J.E., Ma O, Yealy D.M., Meckler G.D., Stapczynski J, Cline D.M., & Thomas S.H.(Eds.), Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 9e. McGraw-Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=2353&sectionid=218687685
  • Burns, E. (2020). Supraventricular Tachycardia (SVT). Life in the Fast Lane. Retrieved from https://litfl.com/supraventricular-tachycardia-svt-ecg-library/

Cite this article as: Joseph Ciano, USA, "Question Of The Day #27," in International Emergency Medicine Education Project, February 19, 2021, https://iem-student.org/2021/02/19/question-of-the-day-27/, date accessed: February 28, 2021

Question Of The Day #26

question of the day
qod26
38 - atrial fibrillation

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient presents to the emergency department with palpitations, a narrow complex tachycardia (<120msec), and an irregularly irregular rhythm. A close look at this patient’s EKG reveals the absence of discrete P waves and QRS complexes that are spaced at varying distances from each other (most apparent in lead V6). These signs support a diagnosis of Atrial Fibrillation, or “AFib.” Atrial Fibrillation is an arrhythmia characterized by an irregularly irregular rhythm, the absence of P waves with a flat or undulating baseline, and narrow QRS complexes. Wide-QRS complexes may be present in AFib if there is a concurrent bundle branch block or Wolff-Parkinson White Syndrome. AFib is caused by the electric firing of multiple ectopic foci in the atria of the heart. This condition is triggered by a multitude of causes, including ischemic heart disease, valvular heart disease, dilated or hypertrophic cardiomyopathies (likely related to this patient’s congestive heart failure history), sepsis, hyperthyroidism, excess caffeine or alcohol intake, pulmonary embolism, and electrolyte abnormalities.

The main risk in AFib is the creation of thrombi in the atria as they fibrillate, resulting in emboli that travel to the brain and cause a stroke. The CHA2DS2VASc scoring system is used to risk stratify patients and determine if they require anticoagulation to prevent against thrombo-embolic phenomenon (i.e. stroke). This patient has a high CHA2DS2VASc score, so she would require anticoagulation. In addition to anticoagulation, A fib is treated with rate control (i.e. beta blockers or calcium channel blockers), rhythm control (i.e. anti-arrhythmic agents), or electrical cardioversion. Electrical cardioversion (choice A) is typically avoided when symptoms occur greater than 48 hours, since the risk of thrombo-emboli formation is higher in this scenario. An exception to this would be a patient with “unstable” AFib. Signs of instability in any tachyarrhythmia are hypotension, altered mental status, or ischemic chest pain. This patient lacks all of these signs and symptoms. Although this patient lacks signs of instability, this patient’s marked tachycardia should be addressed with medical treatment. General observation (Choice C) is not the best choice for this reason. Intravenous adenosine (Choice D) is the best choice for a patient with supraventricular tachycardia (SVT). This is a narrow-complex AV nodal re-entry tachycardia with rates that range from 120-280bpm. SVT also lacks discrete P waves. A key factor that differentiates A fib from SVT is that SVT has a regular rhythm, while AFib has an irregular rhythm. Intravenous metoprolol (Choice B) is the best treatment option listed in order to decrease the patient’s heart rate.

References

  • Brady W.J., & Glass III G.F. (2020). Cardiac rhythm disturbances. Tintinalli J.E., Ma O, Yealy D.M., Meckler G.D., Stapczynski J, Cline D.M., & Thomas S.H.(Eds.), Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 9e. McGraw-Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=2353&sectionid=218687685
  • Burns, E. (2020) Atrial Fibrillation. Life in The Fast Lane. Retrieved from https://litfl.com/atrial-fibrillation-ecg-library/

 

Cite this article as: Joseph Ciano, USA, "Question Of The Day #26," in International Emergency Medicine Education Project, February 12, 2021, https://iem-student.org/2021/02/12/question-of-the-day-26/, date accessed: February 28, 2021

Question Of The Day #25

question of the day
qod25
835 - 3rd degree heart block

Which of the following is the most likely diagnosis of this patient’s condition?

This patient has marked bradycardia on exam with a borderline low blood pressure. These vital sign abnormalities are likely the cause of the patient’s dizziness. Bradycardia is defined as any heart rate under 60 beats/min. The most common cause of bradycardia is sinus bradycardia (Choice A). Other types of bradycardia include conduction blocks (i.e. type 2 or type 3 AV blocks), junctional rhythms (lack of P waves with slow SA nodal conduction), idioventricular rhythms (wide QRS complex rhythms that originate from the ventricles, not atria), or low atrial fibrillation or atrial flutter. About 80% of all bradycardias are caused by factors external to the cardiac conduction system, such as hypoxia, drug effects (i.e., beta block or calcium channel blocker use or overdose), or acute coronary syndromes.

ecg qod25Sinus bradycardia (Choice A) occurs when the electrical impulse originates from the SA node in the atria. Signs of sinus bradycardia on EKG are the presence of a P wave prior to every QRS complex. This EKG shows P waves prior to each QRS complex, but there are extra P waves that are not followed by QRS complexes. Some P waves are “buried” within QRS complexes or within T waves. The EKG below marks each P wave with a red line and each QRS complex with a blue line.

 

First-degree AV Block (Choice B) is a benign arrhythmia characterized by a prolonged PR interval. This patient’s EKG has variable PR intervals (some prolonged, some normal). This is a result of a more severe AV conduction block. Second-Degree AV Blocks are divided into Mobitz type I and Mobitz Type II. Mobitz type I, also known as Wenckebach, is characterized by a progressive lengthening PR interval followed by a dropped QRS complex. This can be remembered by the phrase, “longer, longer, longer, drop.” Wenckebach is a benign arrhythmia that does not typically require any treatment. Mobitz type II (Choice C) is characterized by a normal PR interval with random intermittent dropping of QRS complexes. This patient’s EKG has consistent spacing between each QRS complex (blue lines) and consistent spacing between each P wave (red lines). However, the P waves and QRS complexes are not associated with each other. This phenomenon is known as AV dissociation. These EKG changes are signs of a complete heart block, also known as Third-Degree AV Block (Choice D). Both Second-Degree AV block- Mobitz type II (Choice C) and Third-Degree AV Block (Choice D) are more serious conduction blocks that require cardiac pacemakers. Correct Answer: D

References

  • Brady W.J., & Glass III G.F. (2020). Cardiac rhythm disturbances. Tintinalli J.E., Ma O, Yealy D.M., Meckler G.D., Stapczynski J, Cline D.M., & Thomas S.H.(Eds.), Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 9e. McGraw-Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=2353&sectionid=218687685
  • Nickson, C. (2020). Heart Block and Conduction Abnormalities. Life in the Fast Lane. Retrieved from https://litfl.com/heart-block-and-conduction-abnormalities/

 

Cite this article as: Joseph Ciano, USA, "Question Of The Day #25," in International Emergency Medicine Education Project, February 5, 2021, https://iem-student.org/2021/02/05/question-of-the-day-25/, date accessed: February 28, 2021

Question Of The Day #24

question of the day
qod24
738.1 - Prior ECG before 738.2 - STEMI

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient is suffering from severe bradycardia with signs of poor cardiac output, shock, and diminished perfusion to the brain. Bradycardia is defined as any heart rate under 60 beats/min. Many individuals may be bradycardic at rest with no danger to the patient (i.e. young patients or athletes). Bradycardia in these scenarios is physiologic and is not associated with difficulty in perfusing the brain and other organs. This patient’s 12-lead EKG shows sinus bradycardia since there is a P wave prior to every QRS complex. Sinus bradycardia is the most common type of bradycardia. Other types of bradycardia include conduction blocks (i.e. type 2 or type 3 AV blocks), junctional rhythms (lack of P waves with slow SA nodal conduction), idioventricular rhythms (wide QRS complex rhythms that originate from the ventricles, not atria), or slow atrial fibrillation or atrial flutter. About 80% of all bradycardias are caused by factors external to the cardiac conduction system, such as hypoxia, drug effects (i.e. beta block or calcium channel blocker use or overdose), or acute coronary syndromes.  

For any patient with a bradyarrhythmia or tachyarrhythmia, it is crucial to determine if the arrythmia is “stable” or “unstable”. Signs that an arrhythmia is unstable include altered mental status, hypotension with systolic blood pressure under 90mmHg, chest pain, or shortness of breath. Patients with a stable arrhythmia can be managed supportively with observation and less invasive medical management. Patients with unstable arrhythmia are managed more aggressively with the use of electricity, often in combination with other medical treatments. This patient has an unstable bradyarrhythmia, given her altered mental status and hypotension. Intravenous metoprolol (Choice D) would make the patient more bradycardic since this medication blocks beta-adrenergic receptors of the heart that control heart rate and contractility. Intravenous Amiodarone (Choice C) is an antiarrhythmic agent used often in wide complex tachyarrhythmias (i.e. Ventricular Tachycardia). Intravenous atropine or epinephrine are agents that can be used in this patient prior to preparing for electric pacing. Transcutaneous pacing (Choice A) should always be attempted prior to Transvenous pacing (Choice B), as Transcutaneous pacing is less invasive and quicker to set up. If Transcutaneous pacing does not result in electrical “capture” or change the heart rate, the next step is Transvenous pacing. Correct Answer: A 

References

  • Brady W.J., & Glass III G.F. (2020). Cardiac rhythm disturbances. Tintinalli J.E., Ma O, Yealy D.M., Meckler G.D., Stapczynski J, Cline D.M., & Thomas S.H.(Eds.), Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 9e. McGraw-Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=2353&sectionid=218687685
  • Burns, E. (2020). Sinus Bradycardia. Life in the Fast Lane. Retrieved from https://litfl.com/sinus-bradycardia-ecg-library/
Cite this article as: Joseph Ciano, USA, "Question Of The Day #24," in International Emergency Medicine Education Project, December 11, 2020, https://iem-student.org/2020/12/11/question-of-the-day-24/, date accessed: February 28, 2021

How To Present Your Case In The ED

how to present your case in the ED

As a medical student, presenting history and physical exam of a patient to the attending can be nerve-wracking. In the ED, physicians typically prefer an even more succinct presentation than usual, ideally less than 3 min. Case presentations are a great opportunity to show that you understand what the pertinent positives and negatives for the patient’s presenting complaint are and that you can summarize a large amount of information collected in an organized manner. Case presentations are your opportunity to impress your preceptor, so it is an important skill to master. It will also be the mode of communicating with the rest of the healthcare team throughout your career in medicine. Better communication = better patient care!

Ask

Before we get started, it is important to recognize that every physician may have their own preference for how they would like case presentations organized. Some prefer more details, and some prefer a specific order. Therefore, it is always a smart idea to ask your preceptor at the beginning of your ED shift if they have a preference for how they like cases to be presented.

The One Liner

State the patient’s name, age, sex, chief complaint, and any pertinent medical history. E.g., John Doe is a 16-year-old male with a history of eczema presenting with wheezing.

History of Presenting Illness (HPI)

include the details of the chief complaint, as well as any pertinent positives and negatives.
  1. Why did this patient present to the ED today?
  2. What are the details of the chief complaint? I.e. Onset, Duration, Progression, Alleviating and Aggravating Factors, Causes/Triggers, Changes with Position, etc.
    • For pain, it is helpful to describe OPQRSTU – Onset, Position, Quality, Radiation, Severity, Temporal, déjà vU (has it ever happened before).
  3. Any associated symptoms
  4. Any risk factors?
    • Any relevant past medical history (e.g. chronic conditions, hospitalizations, surgeries, etc.), family history, or social history (e.g. habits, living situation, alcohol consumption, smoking history, illicit drug usage)?

Review of Systems

Describe any other symptoms here.

  • Note that some ED physicians may not want a review of systems included in the oral case presentation if it does not include any additional pertinent information, but a review of systems should always be included in your written patient note. 

Medications

Allergies

if the patient states that they do not have any allergies, this can be recorded and/or stated as “NKDA” which stands for No Known Drug Allergies.

Physical Exam Findings

  1. Start off by stating the most updated set of vitals.
  2. Next, state the patient’s general appearance as this helps decide between sick vs. not sick. E.g., patient is alert, oriented, and in no apparent respiratory distress.
  3. Then, delve into the pertinent details of the physical exam. E.g. for a cardiac complaint, it is important to include the specific details of the cardiovascular exam and respiratory exam, but not of all the other systems.
  4. A brief overview of the other systems that a physical exam was conducted for can be useful, but be as concise as possible, and organize information in a head-to-toe fashion if needed. If there were no other findings, you can state that the remainder of the physical exam was unremarkable. 

Summary

In 2-3 sentences, gather the main findings of your history and physical exam. Be sure to restate the initial one-liner sentence, other pertinent positives and negatives, and any important test results so far.

Impression/Assessment

State your differential diagnosis for each problem.

  • Start off by stating what you think the most likely diagnosis is, and why you think it is the most likely.
  • Then, state any other likely diagnoses you are suspecting.
  • Lastly, state the deadly diagnoses that could be possible with this patient’s chief complaint. In some cases, this can be the first thing you may want to say. It is important to specify why you do or do not feel confident in ruling these out. E.g., in a baby presenting with fever of unknown origin, it is important to state why you are not (or are) suspecting meningitis, encephalitis, malignancy, or autoimmune conditions.
  • Many medical students will shy away from stating their impression of what could be going on in terms of differential diagnosis, but this is an important thing to attempt. Preceptors will appreciate your effort in synthesizing what could be going on and be impressed by it, even if your impression is incorrect. This is often what sets apart students that “meet expectations” vs. students that are considered “outstanding”.

Plan

What do you want to do next?

  • Plan includes anything from the tests you want to order (including repeat vitals, bloodwork, and imaging), immediate treatment (including analgesics and fluids), and referrals you want to make (including consults, admission/discharge plan, and referral to allied health professionals such as social work, speech-language pathology, occupational therapy, and physiotherapy).  
  • Do not forget to take the patient’s social history into account when deciding what to do next.

Congrats – you have now completed your oral case presentation! This is a skill you will continue to develop with practice, so do not worry and keep working at it. It is also a good idea to always ask your preceptor for feedback on your case presentation once it is complete, as that will help you identify your strengths and weaknesses.

References and Further Reading

Cite this article as: Sheza Qayyum, Canada, "How To Present Your Case In The ED," in International Emergency Medicine Education Project, December 7, 2020, https://iem-student.org/2020/12/07/how-to-present-your-case-in-the-ed/, date accessed: February 28, 2021

More Blog Posts By Sheza Qayyum

Question Of The Day #23

question of the day
qod23
3. PEA

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient presented to the emergency department with acute pleuritic chest pain, dyspnea, and experienced a cardiac arrest prior to a detailed physical examination. The cardiac monitor shows a narrow complex sinus rhythm morphology. In the setting of a cardiac arrest and pulselessness, this cardiac rhythm is known as pulseless electric activity (PEA). PEA includes any cardiac rhythm that is not asystole, ventricular fibrillation, or pulseless ventricular tachycardia. The ACLS algorithm divides the management of patients with pulseless ventricular tachycardia (pVT) or ventricular fibrillation (VF) and patients with pulseless electric activity (PEA) or asystole. Assuming adequate staff and medical resources are present, patients with all of these rhythms receive high-quality CPR, IV epinephrine, and airway management. Patients with pVT or VF receive electrical cardioversion, while patients with PEA or asystole do not receive electrical cardioversion. Patients with PEA or asystole generally have a poorer prognosis than those with pVT or VF. Out of hospital cardiac arrests that present to the emergency department with PEA or asystole on initial rhythm have a survival rate of under 3%. The etiology of PEA in cardiac arrest includes a wide variety of causes. A traditional approach to remembering the reversible causes of PEA are the “Hs & Ts”. The list of the “Hs & Ts” along with their individual treatments are listed in the table below.

PEA treatments

Sodium bicarbonate (Choice A) would be the correct choice for a patient whose PEA arrest was caused by severe acidosis. This can occur in severe lactic acidosis (i.e. sepsis), diabetic ketoacidosis, certain toxic ingestions (i.e. iron, salicylates, tricyclic antidepressants), as well as other causes. Calcium gluconate (Choice B) would be the correct choice for a patient whose PEA arrest was caused by hyperkalemia. This can occur in renal failure, in the setting of certain medications, rhabdomyolysis (muscle tissue breakdown), and other causes. Blood products (Choice D) would be the correct choice for a patient whose PEA arrest was due to severe hemorrhage, such as gastrointestinal bleeding or in the setting of traumatic injuries. This patient has symptoms and risk factors for pulmonary embolism, including pleuritic chest pain, dyspnea, and a cancer history. These details make pulmonary embolism the most likely cause of PEA arrest in this scenario. The best treatment for this diagnosis would be thrombolysis (Choice C).

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #23," in International Emergency Medicine Education Project, December 4, 2020, https://iem-student.org/2020/12/04/question-of-the-day-23/, date accessed: February 28, 2021

Question Of The Day #22

question of the day
qod22
1. VFib

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient presents to the Emergency Department after a cardiac arrest with an unknown medical history. Important components of Basic Life Support (BLS) include early initiation of high-quality CPR at a rate of 100-120 compressions/minute, compressing the chest to a depth of 5 cm (5 inches), providing 2 rescue breaths after every 30 compressions (30:2 ratio), avoiding interruptions to CPR, and allowing for adequate chest recoil after each compression. In the Advanced Cardiovascular Life Support (ACLS) algorithm, intravenous epinephrine is administered every 3-5 minutes and a “pulse check” is performed after every 2 minutes of CPR. The patient’s cardiac rhythm, along with the clinical history, helps decide if the patient should receive additional medications or receive unsynchronized cardioversion (defibrillation, or “electrical shock. The ACLS algorithm divides management in patients with pulseless ventricular tachycardia (pVT) or ventricular fibrillation (VF) and patients with pulseless electric activity (PEA) or asystole.

The cardiac rhythm seen during the pulse check for this patient is ventricular fibrillation. The ACLS algorithm advises unsynchronized cardioversion at 150-200 Joules for patients with pVT or VF. Continuing chest compressions (Choice A) with minimal interruptions is a crucial component of BLS, however, this patient’s cardiac rhythm is shockable. Defibrillation (Choice B) takes precedence over CPR in this scenario. Amiodarone (Choice C) is an antiarrhythmic agent that is recommended in patients with pVT, in addition to unsynchronized cardioversion. This patient has VF, not pVT. Sodium bicarbonate (Choice D) is an alkaline medication that is helpful in cardiac arrests caused by severe acidosis or certain toxins (i.e. salicylates or tricyclic antidepressants). The next best step in this patient scenario would be defibrillation for the patient’s VF (Choice B).

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #22," in International Emergency Medicine Education Project, November 27, 2020, https://iem-student.org/2020/11/27/question-of-the-day-22/, date accessed: February 28, 2021

Question Of The Day #21

question of the day
qod21

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient experienced a witnessed cardiac arrest at home, after which pre-hospital providers initiated cardiopulmonary resuscitation (CPR, or “chest compressions”) and Advanced Cardiovascular Life Support (ACLS). ACLS includes the tenets of Basic Life Support (BLS), such as early initiation of high-quality CPR at a rate of 100-120 compressions/minute, compressing the chest to a depth of 5 cm (2 inches), providing 2 rescue breaths after every 30 compressions (30:2 ratio), avoiding interruptions to CPR, and allowing for adequate chest recoil after each compression. In the ACLS algorithm, intravenous epinephrine is administered every 3-5 minutes and a “pulse check” is performed after every 2 minutes of CPR. The patient’s cardiac rhythm, along with the clinical history, helps decide if the patient should receive defibrillation (“electrical shock”) or additional medications. The ACLS algorithm divides management into patients with pulseless ventricular tachycardia (pVT) or ventricular fibrillation (VF) and patients with pulseless electric activity (PEA) or asystole.

The cardiac rhythm seen during the pulse check for this patient is a wide complex tachycardia with a regular rhythm. In the setting of cardiac arrest, chest pain prior to collapse, and a history of acute coronary syndrome, ventricular tachycardia is the most likely cause. The ACLS algorithm advises unsynchronized cardioversion at 150-200 Joules for patients with pVT or VF. Watching the cardiac monitor for a rhythm change (Choice A) or checking for a pulse (Choice D) are not recommended after defibrillation. A major priority of both BLS and ACLS is to avoid interruptions to CPR, so the best next step in management is to continue CPR (Choice B) after defibrillation. Administration of intravenous adrenaline (Choice C) is helpful for cardiac arrests to initiate shockable rhythm and should be repeated every 3-5 minute or every 2 cycle of CPR, particularly valuable in asystole patients. Calcium gluconate is another drug that can be used in patients with hyperkalemia and indicated in a patient with known kidney disease, missed hemodialysis sessions, or a history of usage of medications that can cause hyperkalemia. Magnesium can be used for patients who show polymorphic VT, particularly Torsades de Pointes. The next best step in this scenario is to continue CPR, regardless of the etiology of the cardiac arrest. Correct Answer: B.

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #21," in International Emergency Medicine Education Project, November 13, 2020, https://iem-student.org/2020/11/13/question-of-the-day-21/, date accessed: February 28, 2021

Question Of The Day #20

question of the day
cod20
608 - Figure3 - pericardial effusion - ECG

Which of the following is the most appropriate next investigation for this patient’s condition?

This patient’s EKG demonstrates alternating amplitudes of QRS complexes, a phenomenon known as electrical alternans. This is caused by the heart swinging back and forth within a large pericardial effusion. The patient is tachycardic and borderline hypotensive, which should raise concern over impending cardiac tamponade. The next best investigation to definitively diagnose a large pericardial effusion with possible tamponade would be a cardiac sonogram (Choice B). This investigation could also guide treatment with pericardiocentesis in the event of hemodynamic decompensation and the development of obstructive shock. Other EKG signs of a large pericardial effusion are diffusely low QRS voltages and sinus tachycardia. Chest radiography (Choice C) may show an enlarged cardiac silhouette in this case and evaluate for alternative diagnoses (i.e. pneumothorax, pleural effusions, pneumonia, atelectasis), however, cardiac echocardiography is the best next investigation. CT pulmonary angiography (Choice D) would demonstrate the presence of a pericardial effusion along with differences in cardiac chamber size indicative of tamponade. Still, bedside cardiac sonogram is a faster test that prevents a delay in diagnosis. Sending a potentially unstable patient for a CT scan may also be dangerous. Arterial blood gas testing (Choice A) has no role in diagnosing pericardial effusion or cardiac tamponade. Correct Answer: B

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #20," in International Emergency Medicine Education Project, November 6, 2020, https://iem-student.org/2020/11/06/question-of-the-day-20/, date accessed: February 28, 2021

Approach to Acute Cough in Adults

Approach to Acute Cough in Adults

Cough is one of the most common complaints presenting to any emergency physician or primary care practitioner – whether it is the chief complaint or an associated symptom. An acute cough is one that has been present for less than three weeks. In the era of COVID-19, a patient presenting with an acute cough can be alarming and scary. So, now more than ever, it is important to develop a strong diagnostic approach to the acute cough, which is largely a clinical diagnosis.

Differential Diagnosis of Acute Cough

*Indicates the most common causes of acute cough.
Cause Example Symptoms / warning signs
Infectious (viral/bacterial) Upper respiratory tract infection aka common cold* Rhinorrhea, nasal obstruction, sneezing, scratchy/sore throat, malaise, headache, and no signs of consolidation
Acute bronchitis* Recent upper respiratory tract infection, and absence of COPD, and absence of high fever or other systemic signs
Influenza Fever, sore throat, nasal congestion, myalgia, headache, and no signs of consolidation
Pneumonia* Fever, tachycardia, tachypnea, consolidation signs on respiratory exam, and mental status change in patients >75y old
Pertussis Whooping cough and cough-emesis
COVID-19 Fever, non-productive cough, fatigue, dyspnea, and/or other less common symptoms such as sore throat, diarrhea, headache, skin rash, and anosmia
Post-nasal drip aka upper airway cough syndrome Post-nasal drainage sensation, need to clear throat, and rhinorrhea

Allergic rhinitis aka hay fever Itching and watering of eyes, rhinorrhea, pruritis
Exacerbation of a pre-existing chronic disease Exacerbation of Asthma   History of episodic wheezing, non-productive cough, dyspnea, reversible air-flow obstruction, allergen exposure or triggered by exercise
Exacerbation of COPD Smoking history, dyspnea, signs of obstruction on respiratory exam i.e. decreased breath sounds, and irreversible air-flow obstruction
Exacerbation of CHF Dyspnea, orthopnea, peripheral edema, gallop rhythm on cardiac exam, and elevated JVP
Drug-induced ACE inhibitor use Non-productive cough, tickling or scratchy sensation in throat typically arising within 1 week of starting medication
Gastroesophageal reflux disorder (GERD)

 

Heartburn, regurgitation, dysphagia, and cough is more prominent at night
Other pulmonary causes Pulmonary embolism Clinical signs and symptoms of DVT, dyspnea, tachypnea, tachycardia, pleuritic chest pain, immobilization for 3 or more days, surgery in the past 4 weeks, history of DVT/PE, hemoptysis, and malignancy with active treatment in the past 6 months
Lung cancer Smoking history, new change in cough, hemoptysis, dyspnea, night sweats, weight loss, and signs of focal obstruction on respiratory exam i.e. decreased breath sounds
Foreign body aspiration Dyspnea, inspiratory stridor, choking, and elevated risk in children
Acute inhalation injury History of exposure to smoke (e.g. in firefighters, thermal burn victims) or chemicals (e.g. chlorine, ammonia)
Bronchiectasis Large volumes of purulent sputum, dyspnea, wheezing, and chest pain
Interstitial lung disease Non-productive cough, dyspnea, fatigue, weight loss
         

Picture the scene: A 23-year-old female presents to the emergency department with a cough that has been ongoing for one week. What are your next steps?

History

  1. Confirm the duration and timing of cough
  2. Nature of cough, i.e. whooping, hemoptysis, and productive vs non-productive?
  3. Presence of the following associated symptoms: fever, dyspnea, sore throat, headache, chest pain, heartburn, rhinorrhea, facial pressure/pain, nasal congestion, or weight loss
  4. History of any chronic lung disease (i.e. asthma, COPD), allergies, CHF, or immunosuppression?
  5. Smoking history?
  6. Medication history, i.e. ACE inhibitor use?

Physical Exam

  1. Vitals
  2. HEENT exam (head, eyes, ears, nose, and throat)
  3. Respiratory exam
  4. Cardiac exam, including JVP

Laboratory Tests

  • Send for COVID-19 swab according to your hospital’s guidelines
  • Order CBC if suspecting infection
  • Order ABG if dyspnea present or life-threatening cause of acute cough suspected
  • Order sputum culture if suspecting bacterial pneumonia
  • Spirometry if need to differentiate between obstructive lung disease (e.g., asthma, COPD) and restrictive lung disease (e.g., interstitial lung disease)

Imaging

  • Consider starting with a Chest X-ray if red flags for serious pathology are present >> dyspnea, hemoptysis, chest pain, weight loss, immunosuppression, significant smoking history, elderly or at risk of aspiration, tachypnea or hypoxemia, abnormal cardiac or respiratory exam, or sepsis.
  • If suspecting foreign body aspiration, need to order bronchoscopy 

Please note that treatment of the conditions that may cause acute cough are not discussed in this blog post, but can be found through medical resources such as those in the references section. Treatment for acute cough often requires treating the underlying cause.

References

  1. Boujaoude ZC, Pratter MR. Clinical approach to acute cough. Lung. 2010;188 Suppl 1(Suppl 1):S41-S46. doi:10.1007/s00408-009-9170-6
  2. Holzinger F, Beck S, Dini L, Stöter C, Heintze C. The diagnosis and treatment of acute cough in adults. Dtsch Arztebl Int. 2014;111(20):356-363. doi:10.3238/arztebl.2014.0356
  3. Madison JM, Irwin RS. Cough: A worldwide problem. Otolarynogol Clin North Am. 2010 Feb;43(1):1-13, vii.
  4. Strong Medicine. An Approach to Cough. Published 25 March, 2018. https://www.youtube.com/watch?v=LDMEtNXik-A
  5. University of Toronto. Cough and Dyspnea. 2015. http://thehub.utoronto.ca/family/cough-and-dyspnea/ Accessed 17 August, 2020.

 

Cite this article as: Sheza Qayyum, Canada, "Approach to Acute Cough in Adults," in International Emergency Medicine Education Project, November 4, 2020, https://iem-student.org/2020/11/04/approach-to-acute-cough-in-adults/, date accessed: February 28, 2021

From Missed Hemodialysis to Multiple Arrhythmias

From Missed Hemodialysis to Multiple Arrhythmias

Case Presentation

A 78-year-old male, known case of Chronic Kidney Disease on maintenance hemodialysis, presented to the Emergency Department with dizziness and lethargy complaints about 2 days. He had missed his last hemodialysis session due to personal reasons. We could not elicit any further history details as was significantly dyspneic (no bystanders with him at the time of presentation). Hence, the patient was received in Bay 1 for immediate resuscitative measures. The patient was afebrile, conscious, and well oriented, but unable to communicate because of severe dyspnea.

Vitals

HR – 142 beats/min
BP – not recordable
RR – 36 breaths/min
SpO2 – poor tracing, intermittently showed 98% on room air (15 LO2 via Non Rebreathing Mask was initiated nevertheless)

ECG

ECG on presentation
Monomorphic ventricular tachycardia

He was immediately connected to a defibrillator in anticipation of possible synchronized cardioversion. Simultaneously, the cause of the possible rhythm was being evaluated for and a thorough examination was carried out. On examination, his lung fields were clear. His left arm AV Fistula had a feeble thrill on palpation.

In suspicion of hyperkalemia as the cause of VT, patient was immediately started on potassium reduction measures while the point of care ABG report was awaited. He was treated with salbutamol nebulization 10mg, sodium bicarbonate 50 ml IV and 10% calcium gluconate 10ml IV. In view of hemodynamic instability, he was also started on intravenous noradrenaline infusion.

ABG Findings

pH – 7.010, pCO2 – 20.8 mmHg, pO2 – 125 mmHg, HCO3 – 7 mmol/L, Na – 126 mmol/L, K – 9.6 mmol/L

As hyperkalemia was confirmed, the patient was also given 200 ml of 25% dextrose with 12 units of Rapid-acting insulin IV. With the above measures, the patient’s cardiac rhythm came to a sine wave pattern. 

He was later taken up for emergency hemodialysis (HD) – Sustained Low Efficacy Dialysis (SLED) in the ICU, using a low potassium dialysate. Since his AV fistula was non-functioning, HD was done after placement of a femoral dialysis catheter. 2 hours into HD, the patient’s cardiac monitor showed a normal sinus rhythm. His hemodynamic status significantly improved. Noradrenaline infusion was gradually tapered and stopped by the end of the HD session, and repeat blood gas analysis and serum electrolytes showed improvement of all parameters. 

after hemodialysis

The patient was discharged 2 days later, after another session of hemodialysis (through AV fistula) and a detailed cardiology evaluation (ECHO – LVH, normal EF).

For the Inquisitive Minds

  1. The patient underwent a detailed POCUS evaluation, both in the ER and ICU. What findings do you expect to find on the RUSH examination for this patient?
  2. His previous ECHO report (done 1 month ago) mentioned left ventricular hypertrophy and normal ejection fraction. So what would be the reason behind the POCUS findings? Is it reversible?
  3. Why was the AV fistula non-functioning at the time of presentation? When would it have started to function again?
  4. Despite not having hypoxia, this patient was given supplemental oxygen. Did he really require it, and if so, what was the rationale?
  5. What was the necessity for carrying out SLED for this patient?
  6. Why was this patient not immediately cardioverted in the ER?
  7. If this patient had gone into cardiac arrest, what drugs would you have given for management of hyperkalemia?
  8. How differently would you have managed this patient?

Please give your answers and comments into "leave a reply" area below.

Cite this article as: Gayatri Lekshmi Madhavan, India, "From Missed Hemodialysis to Multiple Arrhythmias," in International Emergency Medicine Education Project, November 2, 2020, https://iem-student.org/2020/11/02/missed-hemodialysis/, date accessed: February 28, 2021
Share on facebook
Share on twitter
Share on linkedin
Share on whatsapp
Share on email