Cellulitis – Clinical Image and Ultrasound

cellulitis

Case Presentation

A 45-years-old male with a week history of right leg swelling and redness presented to the ED. He has type II DM and hypertension. He denies fever; however, complaints about burning pain over the skin. Vitals were 156/98 mmHg blood pressure, 98 beats per minute heart rate, 16 respiration per minute, 36.7 degrees Celsius temperature and 98% oxygen saturation in room air. Physical exam revealed erythema over the right medial lower leg and calf area (images). Minimally painful with palpation. The area was hot compared to the left leg. Other examination findings were unremarkable.

Cellulitis 2

Cellulitis 1

Patients with red, swollen, painful leg may have very severe problems such as necrotizing fasciitis (infection involving muscular fascia) or infections involving muscles with or without gangrene. The patients having these infections are generally ill-looking, severely painful, and may have subcutaneous crepitations. Therefore, we should be aware of these red flags. This patient has no sign of crepitations, systemic illness, or severe pain.

Lipodermatosclerosis is chronic erythema. Patients show exacerbations because of vascular insufficiency (venous). It can be bilateral or unilateral. One of the discriminative findings from cellulitis is temperature over the lesion. Lipodermatosclerosis is not hot. In the case, the palpation showed warm skin compared to the left side.

Erysipelas is superficial and its’ borders are very sharp. The lesion is fluffy compared to the skin around the lesion. In the case, some areas of the skin were found a little bit raised compared to surrounding structures. However, its’ borders were not well-demarcated.

Other differentials are burns, contact dermatitis, urticaria, etc.

Bedside ultrasound imaging can help to identify cellulitis, abscess, foreign body, fracture, etc. Cobblestone finding is a typical finding for cellulitis.

Bedside ultrasound imaging was performed with Butterfly iQ with soft tissue settings. Cobblestone finding was found in the erythematous areas. This is a nonspecific finding and can be seen many different soft tissue infections. There were no gas/air artifacts (necrotizing fasciitis) or obvious abscess formation. However, there was a minimal fluid accumulation, which creates a suspicion of an abscess. In the case, there was no air artifact. However, x-rays can also help to show air accumulation in soft tissues.

An Example for Necrotizing Fasciitis

The ultrasound investigation in this video shows the air (white) artifacts in the soft tissue.

X-ray Image Showing Subcutaneous Air in Necrotizing Fasciitis

Case courtesy of Dr Matt Skalski, Radiopaedia.org. From the case rID: 25026

For mild uncomplicated patients – dicloxacillin, amoxicillin, and cephalexin are common choices.

If the patient has a penicillin allergy – clindamycin or a macrolide (clarithromycin or azithromycin) can be used.

Fluoroquinolones should be reserved for gram-negative organisms’ sensitivity defined by culture results because of their additional toxicity risks.

For more antibiotic options and explanations, please visit – here

The patients with co-morbidities compromising immune response, periorbital or perianal locations, unable to tolerate oral medication, deep infections should be admitted.

References and Further Reading

  • Loyer EM, DuBrow RA, David CL, Coan JD, Eftekhari F. Imaging of superficial soft-tissue infections: sonographic findings in cases of cellulitis and abscess. AJR Am J Roentgenol. 1996 Jan;166(1):149-52. PubMed PMID: 8571865.
  • Shyy W, Knight RS, Goldstein R, Isaacs ED, Teismann NA. Sonographic Findings in Necrotizing Fasciitis: Two Ends of the Spectrum. J Ultrasound Med. 2016 Oct;35(10):2273-7. doi: 10.7863/ultra.15.12068. Epub 2016 Aug 31. PubMed PMID: 27582527.
Cite this article as: Arif Alper Cevik, "Cellulitis – Clinical Image and Ultrasound," in International Emergency Medicine Education Project, December 2, 2019, https://iem-student.org/2019/12/02/cellulitis-clinical-image-and-ultrasound/, date accessed: December 8, 2019

Hepatobiliary US Imaging – Illustrations

hepatobiliary ultrasound

Anatomy Of The Hepatobiliary System

Anatomy of the hepatobiliary system

Indications

Indications for clinicians to perform point-of-care hepatobiliary ultrasound include the evaluation of; abdominal pain, jaundice, sepsis and ascites.

Transducer

The most commonly used positions include; left lateral decubitus and supine position. A low-to medium-frequency (2–5 MHz) curvilinear ultrasound transducer will suffice for most ultrasound examinations of the gallbladder.

curvilinear transducer

Patient positioning

Patient positioning plays a vital role in the hepatobiliary ultrasound examination. Transducer position according to gallbladder; longitudinal and transverse.

Focus Points on Hepatobilary Ultrasound

focus points hepatobilary ultrasound

Patient Position and Transducer Position

Patient Position and Transducer Position​
Patient Position and Transducer Position​

Normal Hepatobiliary Ultrasound Findings

Normal Hepatobiliary Ultrasound Findings​

Pathological Hepatobiliary Ultrasound Findings

Pathological Hepatobiliary Ultrasound Findings
Pathological Hepatobiliary Ultrasound Findings
Pathological Hepatobiliary Ultrasound Findings
Pathological Hepatobiliary Ultrasound Findings
Cite this article as: Murat Yazici, "Hepatobiliary US Imaging – Illustrations," in International Emergency Medicine Education Project, November 27, 2019, https://iem-student.org/2019/11/27/hepatobiliary-us-imaging-illustrations/, date accessed: December 8, 2019

Massive Pneumothorax Without A Tension

massive pneumothorax

Case Presentation

A 24-years-old male with shortness of breath and chest pain presented to the emergency department. He was alert and oriented. Vitals were as follows; BP: 127/65 mmHg, HR: 101 beats per min, RR: 24 breaths per min, T: 37-degree celsius, SatO2: 94%. Physical examination revealed that normal breathing sounds on the left side, but decreased breath sounds on the right side of the chest. No JVD noted. Other examination findings were unremarkable.

Shortness of breath and chest pain started suddenly while he was playing soccer about 30 minutes ago. Since then, shortness of breath and chest pain increased. He has no known medical disease, allergy.

Bedside ultrasound revealed pneumothorax on the right.

Bedside Ultrasound Examination

Above video shows left side B mode ultrasound examination. Investigation was done in lung settings by using Butterfly iQ portable ultrasound. Lung sliding and comet tail artefacts are seen on examination which is normal findings.

Above video shows right side B mode and M-mode ultrasound examination. There is no lung sliding or comet tail artefacts in B mode, and M-mode revealed “barcode sign” which is seen in pneumothorax.

Pneumothorax - US - Lung - M-mode

Image shows “barcode sign” in M-mode examination. 

Bedside Portable Chest X-ray

spontaneous pneumothorax 1 - 18yo male

Bedside portable anteroposterior chest x-ray shows right sided large pneumothorax.

Cite this article as: Arif Alper Cevik, "Massive Pneumothorax Without A Tension," in International Emergency Medicine Education Project, November 25, 2019, https://iem-student.org/2019/11/25/massive-pneumothorax-without-a-tension/, date accessed: December 8, 2019

Torus Fracture – Diagnosed with ultrasound

torus fracture

Case Presentation

A 9-years old male patient brought to the ED by his parents because of the right forearm pain. The patient is alert, oriented, and moderately in distress. He described that he stepped on the ball and fell while playing soccer with his friends. He denies any other injury, loss of consciousness, etc.

Physical Exam

Torus Fracture - right arm 2

The patient complaints right forearm pain, especially distal 1/4 of the radius. There was no deformity or swelling recognized on inspection. 

Torus Fracture - right arm 1

The patient refuses any movement on the right arm because of pain during the movement, especially in rotational movements. He prefers to stay in the rest position, as shown in the picture.

There was no visible deformity and swelling in the inspection. However, the patient described palpation tenderness over the forearm, especially point tenderness over the distal 1/4 – 1/5 of the radius. The patient also described minimal pain on elbow and wrist movements. The neurovascular examination was unremarkable. There are no other findings regarding trauma. Patient parents deny any disease, medication, operation, etc. He has received 250 mg paracetamol in the school after consultation with the family. However, he still shows distress because of pain.

After the physical exam, 200 ibuprofen was given. X-ray is planned, and musculoskeletal ultrasound was applied while he waits for an X-ray.

We used Butterfly iQ to investigate the radius by using musculoskeletal settings. The ultrasound showed periosteal discontinuity with a 2-3 mm step-off sign at the distal radius. 

Diagnosing fractures with ultrasound

Ultrasound showed high pooled sensitivity (91%) and specificity (94%) (Schmid et al., 2017). It is a very effective modality, especially in the detection of long bone fractures such as humerus, forearm, tibia, fibula, etc.

In forearm fractures, its’ sensitivity is between 64 and 100%, its’ specificity is between 73-100% (Katzer et al., 2016). Besides, ultrasound provides 25 minutes earlier diagnosis advantage compared to other modalities, namely X-rays. Ultrasound’s effectiveness has elbow, been shown in many articles, its’ best performance is on diaphysis fractures of long bones (Weingberg et al., 2010).

After the detection of Torus (Buckle) fracture by ultrasound, the patient was sent to X-ray in order to investigate elbow, forearm and wrist in more detail. X-rays showed Torus fracture at the distal radius, which the diagnosis aligned with the ultrasound result.​

Torus Fracture - right arm 4

Torus Fracture - right arm 3

AP X-ray showed minor periosteal step-off/bulging on both sides. Lateral X-rays showed periosteal discontinuity with a 2-3 mm step-off on the dorsal side of the radius.

The final diagnosis of the patient was Torus (Buckle) fracture.

A long arm splint was applied in the ED because of his elbow and wrist pain. The patient discharged with pain medication, ice and elevation recommendations. On the 4th day, the patient visited the orthopedic clinic, and his splint changed to short arm splint. He was pain-free on the elbow and wrist.

References

  1. Schmid GL, Lippmann S, Unverzagt S, Hofmann C, Deutsch T, Frese T. The Investigation of Suspected Fracture-a Comparison of Ultrasound With Conventional Imaging. Dtsch Arztebl Int. 2017 Nov 10;114(45):757-764. doi: 10.3238/arztebl.2017.0757. PubMed PMID: 29202925; PubMed Central PMCID: PMC5729224.
  2. Katzer C, Wasem J, Eckert K, Ackermann O, Buchberger B. Ultrasound in the Diagnostics of Metaphyseal Forearm Fractures in Children: A Systematic Review and Cost Calculation. Pediatr Emerg Care. 2016 Jun;32(6):401-7. doi: 10.1097/PEC.0000000000000446. Review. PubMed PMID: 26087441.
  3. Weinberg ER, Tunik MG, Tsung JW. Accuracy of clinician-performed point-of-care ultrasound for the diagnosis of fractures in children and young adults. Injury. 2010 Aug;41(8):862-8. doi: 10.1016/j.injury.2010.04.020. Epub 2010 May 13. PubMed PMID: 20466368.
 
Cite this article as: Arif Alper Cevik, "Torus Fracture – Diagnosed with ultrasound," in International Emergency Medicine Education Project, November 6, 2019, https://iem-student.org/2019/11/06/torus-fracture-diagnosed-with-ultrasound/, date accessed: December 8, 2019

Top Images From iEM Archive

Top Images From iEM Archive
17 - epidural + air

Epidural hemorrhage and free air

12.1 - central catheter misplaced

Central venous catheter misplacement

757.3 - Childhood rush - HFM disease

Childhood rush – HFM disease

26.1 - pneumocaccal meningitis 1

Pneumococcal meningitis, MRI

130.1 - SAH - subarachnoid hemorrhage

Subarachnoid hemorrhage

627.3 - Figure 03 - ICH in the right parietotemporal lobe

Intracranial hemorrhage at temporoparietal location

685.2 - electrical injury entry

Electrical injury, entry

449.3 - subacute subdural3

Subdural hemorrhage

336.5 - normal PA chest x-ray HEART BORDERS

Normal heart borders, normal chest x-ray

ELECTRIC SHOCK; Injuries beyond what the eyes see.​

electric shock

Authors: Dr. Nour Saleh and Dr. Kilalo Mjema

Case presentation

A 53-years-old male, sustained burn wounds on both hands 40 minutes prior presentation to the ED

Primary survey

  • Airway: patent and protected.
  • Breathing: bilateral equal air entry
  • Circulation: warm extremities, capillary refill time is 1 second
    • Vitals on presentation
      • BP: 177/114mmHg
      • HR: 115
      • RR: 16
      • SPO2: 96% in room air
      • T: 36.4
  • Disability: alert and oriented, pupils 5mm bilateral equal light reaction, glucose: 7.3mmol
  • Exposure: holding his hands up in pain with some black discoloration

SAMPLE History

  • Sign and symptoms: pain, see pictures
  • Allergy: no known allergies
  • Medications: not on any medication
  • Past medical history: no known comorbid or any significant medical history
    Last meal: he ate about 2.5 hours prior presentation
  • Event: pain on both hands after sustaining burn injury forty minutes prior presentation to the ED while trying to connect two circuits that sparked causing burn wounds on his hands and felt a jolt of electricity.

No history of heartbeat awareness or any loss of consciousness

electrical injury
electrical injury

Interventions and key steps in management

  • Make sure ABCD is checked and there is no critical intervention needed
  • IV access and fluid resuscitation may be considered depending on the case
  • Analgesics: depends on the severity of pain. Fentanyl 50mcg IV stat can be necessary for many patients.
  • Informed consent for procedural sedation for the dressing of the wounds.
  • Sedation: during the dressing of wounds
  • Point-of-care investigations: ECG, Urine dipstick
  • Blood samples for some labs should be taken; Creatinine, CK, Myoglobin, Electrolytes, Calcium, and Troponin
  • Imaging: X-ray if there is a worry for associated fracture
  • Monitor: input of fluids and output of urine to watch for acute kidney injury, compartment syndrome and rhabdomyolysis
  • Do not forget tetanus immunization

Associated injuries

  • Cardiac arrhythmias

    Ventricular fibrillation is the most common. It occurs in 60% of patients with electrical current traveling from one hand to the other.

  • Renal - Rhabdomyolysis

    Massive tissue necrosis may result in acute kidney injury. Labs to check includes; Creatinine, Blood Urea Nitrogen, Total CK, myoglobin.

  • Neurological

    Damage to both central and peripheral nervous systems can occur. The presentation may include weakness or paralysis, respiratory depression, autonomic dysfunction, memory disturbances, loss of consciousness.

  • Skin

    Degree of injury cannot determine the extent of internal damage especially with low voltage injuries. Minor surface burns may co-exist with massive muscle coagulation and necrosis.

  • Musculoskeletal

    Bones have the highest resistance of any body tissues resulting in the greatest amount of heat when exposed to an electrical current. Results in surrounding tissue damage and potentially may lead to periosteal burns, destruction of bone matrix and osteonecrosis.

  • Vascular / Coagulation system

    Due to electrical coagulation of small blood vessels or acute compartment syndrome.

  • Internal organs

    The internal organ injury is not common but when it happens may result serious problems such as bowel perforations leading to polymicrobial infection, sepsis, and death.

Disposition

Admission and discharge decisions of burn patients depend on the patient’s current situation, burn percentage according to body surface area, location of the burn, and complications of burn. Low voltage electrocutions, if they are asymptomatic with normal physical examinations, can be discharged. Discharge precautions regarding burn care and complications should be clearly explained to the patient and relatives.

Further Reading

Cite this article as: Kilalo Mjema, "ELECTRIC SHOCK; Injuries beyond what the eyes see.​," in International Emergency Medicine Education Project, October 2, 2019, https://iem-student.org/2019/10/02/electric-shock-injuries-beyond-what-the-eyes-see-%e2%80%8b/, date accessed: December 8, 2019

Purple Rain: A Rare Spot Diagnosis

Purple rain urine

Case Presentation

A 70-year-old pleasant elderly male was brought in by his son, surprisingly complaining of purple-colored urine. The son got worried once he saw the purple urine bag and rushed his dad to the Emergency Department.

Upon further questioning, he reports a sweet elderly gentleman, known with previous cerebrovascular accidents, dysphasia and neurogenic bladder, that he has a urinary catheter inserted for. He claims that his dad has been having low appetite and passing less stool in the past week. Otherwise, he didn’t notice any other alarming symptoms. Furthermore, he denied noticing any fever, vomiting, behavioral changes indicating any pain, or recent change in his medications or diet. He had no known allergies as well. Upon full review of symptoms, chronic constipation was appreciated, otherwise, it was unremarkable.

Physical Exam

The patient was lying in bed, a bit uncomfortable, with an attached urinary catheter bag. He was afebrile and vitally stable. Proceeding with a focused physical examination, his chest was clear, and abdomen was soft, lax and nontender, furthermore, his skin had no rashes, and limbs were non-edematous. Inspecting the Urine Catheter Collection Bag, it did reveal Purple Urine Sediment.

Purple Urine in the Urinary Catheter Bag
Purple Urine in the Urinary Catheter Bag

Differential Diagnosis and Workup

Thinking of differential diagnoses of discolored urine, a purple urine bag is almost a spot diagnosis in our practice, definitely after ruling out any possible confounders if any.

We reassured the family and explained to them that we would order some blood and urine tests to confirm the diagnosis and start the appropriate treatment plan.

Case Management and Disposition

Laboratory test revealed mild leukocytosis with neutrophilia and mild elevated CRP. Otherwise, his urea, creatinine, liver function tests and electrolytes were reported normal.

Furthermore, a urine dipstick was done in the ED that reported positive for leukocytes, nitrites, and consequently sent to the lab for culture and full analysis which confirmed the diagnosis of a urinary tract infection (UTI).

We informed the son of the workup results, and a diagnosis of a UTI, given his leukocytosis, positive urine dipstick and the presence of a urinary catheter putting him at risk UTI. We reassured him about the urine color and explained the need to start antibiotics to cover the UTI, and changes the urinary catheter, which left us to explain only why was the urine purple unlike usual cases of UTI’s.

Critical Thinking and Take-home Tips

What is PUBS?

  • PUBS stands for Purple Urinary Bag Syndrome, first described in 1978.(1)
  • It is characterized by purple-colored urine collecting in urinary catheterization bags in patients known to prolonged urinary catheters. 
  • It presents asymptomatically and it is associated with urinary tract infections.
  • PUBS presents alarmingly to patients and family members, yet it is a benign phenomenon.

What causes the purplish discoloration of the urine in PUBS?

  • PUBS is associated with alkaline urine with a high bacterial load. 
  • It results due to UTI with certain bacteria producing sulphatases and phosphatases, which lead tryptophan metabolism to produce indigo (blue) and indirubin (red) pigments, a mixture of which becomes purple. (2)
  • Several bacterial species have been reported in association with PUBS including Providencia stuartii, Providencia rettgeri, Klebsiella pneumoniae, Proteus species, Escherichia coli, Enterococcus species, Morganella morganii, and Pseudomonas aeruginosa. (3)

What are the PUBS risk factors?

  • Female gender
  • Bedridden status or immobility
  • Chronic constipation leading to bacterial overgrowth
  • Renal disease
  • Prolonged urinary catheterization

What is PUBS management?

  • The reassurance of patient and family
  • Regular changing of urinary catheter
  • UTI Antibiotics coverage

What other urine colors should we be aware of?

  • Urine discoloration if a fairly common sign and indicates a certain pathology often that would need your attention as a physician.
  • Most urine discoloration is caused by food intakes, medications, dyes, or specific disease pathologies.
  • Red-colored urine is often related to hematuria, caused by multiple pathologies, including kidney stones, urinary tract injury or infection or cancer, amongst others.
  • Pink colored urine is often related to certain medications or dietary intake, i.e. beetroots and berries.
  • Brown or tea-colored urine indicates hepatobiliary disease or obstruction.
  • Green Urine can result due to medications such as Propofol.

What should I do when I encounter a discolored urine finding in my patient?

  • Remember always to have a systematic approach. 
  • Take a full history, including types or changes in medications history, diet changes, past medical history, and a full review of systems.
  • Keep in mind, some patients who are bedridden or elderly, communication and history taking might be limited; hence you will have to do your due diligence in gathering all the information you can get from family members, or available medical charts.
  • Your physical exam is a great asset as well in collecting information that can help you 

References and Further Reading

  1. Khan F, Chaudhry MA, Qureshi N, Cowley B. Purple urine bag syndrome: An Alarming Hue? A Brief Review of the Literature. Int J Nephrol 2011. 2011 419213. [PMC free article] [PubMed] [Google Scholar]
  2. Kalsi DS, Ward J, Lee R, Handa A. Purple Urine Bag Syndrome: A Rare Spot Diagnosis. Dis Markers. 2017;2017:9131872. doi:10.1155/2017/9131872
  3. Dilraj S. Kalsi, Joel Ward, Regent Lee, and Ashok Handa, “Purple Urine Bag Syndrome: A Rare Spot Diagnosis,” Disease Markers, vol. 2017, Article ID 9131872, 6 pages, 2017. https://doi.org/10.1155/2017/9131872.
  4. Al Montasir A, Al Mustaque A. Purple urine bag syndrome. J Family Med Prim Care. 2013;2(1):104–105. doi:10.4103/2249-4863.109970
  5. Traynor B P, Pomeroy E, Niall D. Purple urine bag syndrome: a case report and review of the literature. Oxford Medical Case Reports, Volume 2017, Issue 11, November 2017, omx059, https://doi.org/10.1093/omcr/omx059
  6. Lin CH, Huang HT, Chien CC, Tzeng DS, Lung FW. Purple urine bag syndrome in nursing homes: Ten elderly case reports and a literature review. Clin Interv Aging. 2008;3:729–34. [PMC free article] [PubMed] [Google Scholar]
Cite this article as: Shaza Karrar, "Purple Rain: A Rare Spot Diagnosis," in International Emergency Medicine Education Project, September 20, 2019, https://iem-student.org/2019/09/20/purple-rain-a-rare-spot-diagnosis/, date accessed: December 8, 2019

Cranial CT Anatomy: A simple image guide for medical students

cranial ct anatomy

Computed tomography (CT) is the most useful brain imaging tool in emergency medical practice. It is also the first imaging modality in patients presenting to the emergency department with headache, stroke and head trauma.

Many cranial lesions can easily be recognized in CT. One of the key points of diagnosing cranial lesions is knowing the anatomical structures. This gives us the advantage to evaluate CT by combining clinical findings with the image.

We created an image series for the most essential eight anatomical structures.

cranial CT slices

Centrum Semiovale

centrum semiovale

Lateral Ventricles

lateral ventricles

3rd Ventricle, Basal Ganglia, Superior Cerebellar Cistern

3rd Ventricle, Basal Ganglia, Superior Cerebellar Cistern​

3rd Ventricle, Basal Ganglia, Quadrigeminal Plate

3rd Ventricle, Basal Ganglia, Quadrigeminal Plate

Midbrain, Interpeduncular Cistern​

interventricular cistern

Suprasellar Cistern, 4th Ventricle

Suprasellar cistern, 4th ventricle

Sella Turcica

sella turcica

Pons, Medullary Junction

pons medullary junction

Further Reading

Bonus Infographic

Cite this article as: Murat Yazici, "Cranial CT Anatomy: A simple image guide for medical students," in International Emergency Medicine Education Project, September 4, 2019, https://iem-student.org/2019/09/04/cranial-ct-anatomy-a-simple-image-guide-for-medical-students/, date accessed: December 8, 2019

Clinical Video: abnormal hand twitching

Case Presentation

A 43-year-old female presented with altered mental status (GCS of 10/15) and abnormal twitching of hand. Reported to have a long-standing history of constipation and had been on laxatives. POC electrolytes showed Sodium: 110 mmol/L, Potassium: 3.5 mmol/L and Calcium: 0.71 mmol/L. The case managed as symptomatic euvolemic hyponatremia, hypocalcemia, and SIADHS.

Symptoms of hypocalcemia

Numbness and/or tingling of the hands, feet, or lips, muscle cramps, muscle spasms, seizures, facial twitching, muscle weakness, lightheadedness, and bradycardia.

Symptoms of hyponatremia

Nausea and vomiting, headache, confusion, loss of energy, drowsiness and fatigue, restlessness and irritability. muscle weakness, spasms or cramps, seizures, coma.

At the presentation time of the patient, you may not know these muscle spasms are because of hypocalcemia and hyponatremia’s similar symptoms. So, laboratory tests can clarify the diagnosis. However, in this case, both (Ca and Na) are low. So, you treat both. 

In addition

There are two findings related to hypocalcemia which worth to mention. Chvostek’s sign is the twitching of the facial muscles in response to tapping over the area of the facial nerve. Trousseau’s sign is carpopedal spasm caused by inflating the blood pressure cuff to a level above systolic pressure for 3 minutes. This video shows both findings.

Do you need more free clinical images or videos for your exams or presentations? Please visit iEM clinical image and video archive in Flickr and YouTube!

Cite this article as: Masuma Ali Gulamhussein, "Clinical Video: abnormal hand twitching," in International Emergency Medicine Education Project, July 10, 2019, https://iem-student.org/2019/07/10/clinical-video-abnormal-hand-twitching/, date accessed: December 8, 2019

Clinical Image: rhabdomyosarcoma?

862.1 - rhabdomyosarcoma 1

A 35-year-old male with a seven-month history of right supraclavicular mass. No compressive symptoms. Clinical and Xray interpretation was soft tissue rhabdomyosarcoma.

862.2 - rhabdomyosarcoma 2
862.3 - rhabdomyosarcoma 3

Rhabdomyosarcoma is one of the aggressive and malignant cancers of skeletal (striated) muscle cells. The cases are mostly young, particularly below age 18. It may arise from al body regions. However, head and neck, urinary and reproductive system, extremities are common locations.

Do you need more free clinical images or videos for your exams or presentations? Please visit iEM clinical image and video archive in Flickr and YouTube!

Cite this article as: Masuma Ali Gulamhussein, "Clinical Image: rhabdomyosarcoma?," in International Emergency Medicine Education Project, July 8, 2019, https://iem-student.org/2019/07/08/clinical-image-rhabdomyosarcoma/, date accessed: December 8, 2019

Lover’s Fracture

A 35-year-old construction worker was brought in by the ambulance to the Emergency Department. He was reported to have fallen from scaffolding at the height of approximately 4 meters and landed onto the concrete floor below feet first. He was found conscious by paramedics but in obvious pain, holding his right leg. Upon initial examination in the ED, the patient remains vitally stable but complains of severe, persistent pain in his right ankle and heel. After adequate analgesia, an X-ray of the right ankle and foot revealed signs of a calcaneal "Lover’s" fracture (Figure 1).

Figure 1
Figure 1: Image courtesy of Annelies van der Plas, and J.L. Bloem - http://www.startradiology.com/internships/general-surgery/ankle/x-ankle/

Calcaneal Fractures

Before we begin our discussion on calcaneal fractures, it is important to highlight the major anatomical structures visible on a standard X-ray of the ankle and foot.

Figure 2
calcaneus and foot anatomy

Figure 2 shows a lateral x-ray of the right ankle, demonstrating the calcaneus as the bone – commonly referred to as the heel – that makes up the majority of the hindfoot.

As would be expected, the size and position of the calcaneus predispose the bone to various forms of injury. A calcaneal fracture is most often sustained after a road traffic accident or a fall from significant height onto the feet as was the case with our patient. Due to the mechanism of injury, it is often colloquially dubbed as “Lover’s fracture” or the “Don Juan fracture”(1).

Epidemiology

Among fractures of the hindfoot, calcaneal fractures comprise 50-60% of all tarsal bone fractures (2). These fractures are usually intra-articular (3) and occur more commonly in young men aged between 20 and 40 years. Diseases which decrease bone density, such as osteoporosis, invariably increase the risk for development of the fracture when injury occurs.

Patient evaluation

Patients with calcaneal fractures will often present in severe pain, though they may not always be able to localize the exact source for their pain. Swelling at the ankle or heel along with bruising (ecchymosis) can also be expected. Due to the mechanism of fall, injury usually occurs bilaterally. Most patients are unable to bear any weight onto the affected limb.

The lower extremity or extremities in question should undergo a thorough neurovascular exam, as diminished pulses distal to the injury (dorsalis pedis) could indicate arterial compromise and mandate aggressive investigation with angiography or Doppler scanning. Though the gold standard for diagnosing calcaneal fractures remains a CT scan, a plain film X-ray is usually obtained first which should include an Antero-Posterior (AP), a lateral, and an oblique view.

Bohler’s Angle and Critical Angle of Gissane

Historically, physicians would measure Bohler’s angle and the critical angle of Gissane in cases where a calcaneal fracture was not clearly evident on a plain X-ray. Outlined in Figure 3, a calcaneal fracture would be suspected if Bohler’s angle was below 20 degrees or the critical angle of Gissane was noted to be more than 140 degrees. Bohler’s angle was found to be a lot more diagnostically reliable when compared to the critical angle of Gissane (4). However, both these methods of diagnosis are now considered obsolete and the same research that studied that utility of the angles found that Emergency Physicians were able to accurately identify calcaneal fractures approximately 98% of the time without the measurement of either angle.

Figure 3
853 - bohler angle - calcaneus
854 - Gissane angle- calcaneus

Figure 3- Bohler’s Angle and Critical angle of Gissane

Management

The goal of initial management in the Emergency Department is centered on adequate pain relief, immobilization and wound care (including antibiotics when there are signs of a contaminated wound). [See the link for open fractures and antibiotic choices.]

An important point to note is that the mechanism of injury in calcaneal fractures (namely fall from height) is a form of axial loading. The energy from landing on the ground will often be transmitted up through the body, usually to the spine causing compression fractures of the vertebrae. The patient, however, may not complain about pain in other areas due to the overwhelming and distracting pain in the calcaneus. Therefore, all calcaneal fractures should be managed with a high index of suspicion for associated injuries.

Other potential complications include compartment syndrome, wound infection, malunion and osteomyelitis. All patients diagnosed to have calcaneal fractures should be managed by a multidisciplinary team that includes an Orthopedic Surgeon to ensure definitive management and repair of the fracture.

Take Home Points

  • High energy impact with axial loading, usually from a road traffic accident or a fall from height should raise suspicion of a calcaneal fracture.

  • Perform a thorough evaluation of the site of injury and suspect associated injuries (check the spine and remember to check the other foot for concomitant injury).

  • Maintain adequate analgesia (these fractures hurt!) and involve the Orthopedic Surgeon as soon as the diagnosis is made.

References and Further Reading

  1. Lee P, Hunter TB, Taljanovic M. Musculoskeletal colloquialisms: how did we come up with these names? Radiographics. 2004;24 (4): 1009-27. doi:10.1148/rg.244045015
  2. Davis D, Newton EJ. Calcaneus Fractures. [Updated 2019 Mar 13]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan
  3. Jiménez-Almonte JH, King JD, Luo TD, Aneja A, Moghadamian E. Classifications in Brief: Sanders Classification of Intraarticular Fractures of the Calcaneus. Clin. Orthop. Relat. Res. 2019 Feb;477(2):467-471
  4. Jason R. K., Eric A. G., Gail H. B., Curt B. H. & Frank L. Boehler’s angle and the critical angle of gissane are of limited use in diagnosing calcaneus fractures in the ED. American Journal of Emergency Medicine. 24, 423–427 (2006)
Cite this article as: M. Anzal Rehman, "Lover’s Fracture," in International Emergency Medicine Education Project, June 28, 2019, https://iem-student.org/2019/06/28/lovers-fracture/, date accessed: December 8, 2019

A 57-year-old man fell from a height comes with neck pain

by Stacey Chamberlain

A 57-year-old man fell from a height of 12 feet while on a ladder. He did not pass out; he reports that he simply lost his footing. He fell onto a grassy area, hitting his head and complains of neck pain. He did not lose consciousness and denied headache, blurry vision, vomiting, weakness, numbness or tingling in any extremities. He denies other injuries. He was able to get up and ambulate after the fall and came in by private vehicle. He has not had previous spine surgery and does not have known vertebral disease. On exam, he is neurologically intact with a GCS of 15, does not appear intoxicated and has moderate midline cervical spine tenderness.

Should you get imaging to rule out a cervical spine fracture?

C-spine Imaging Rules

Canadian C-spine Rule

NEXUS Criteria for C-spine Imaging

  • Age ≥ 65
  • Extremity paresthesias
  • Dangerous mechanism (fall from ≥ 3ft / 5 stairs, axial load injury, high-speed MVC/rollover/ejection, bicycle collision, motorized recreational vehicle)
  • Focal neurologic deficit present
  • Midline spinal tenderness present
  • Altered level of consciousness present
  • Intoxication present
  • Distracting injury present

Both the Canadian C-spine Rule (CCR) and NEXUS Criteria are widely employed in clinical practice to reduce unnecessary cervical spine imaging in trauma patients with neck pain or obtunded trauma patients. The CCR uses mechanism and age criteria, whereas the NEXUS Criteria incorporates criteria including midline tenderness and additional factors that might limit a practitioner’s exam. The CCR can be difficult for some practitioners to remember all the criteria that qualify as a dangerous mechanism and is limited to ages > 16 and < 65. However, it can be used in intoxicated patients if the patients are alert and cooperative, allowing a full neurologic exam. The NEXUS Criteria are applicable over any age range (> 1 year old), but the sensitivity may be low in patients > 65 years of age. A single comparison study found the CCR to have better sensitivity (99.4% versus 90.7%); however, the study was performed by hospitals involved in the initial CCR validation study.

Case Discussion

By applying either criteria to this case, the patient would require C-spine imaging as by CCR, the patient would meet criteria for dangerous mechanism, and by NEXUS, the patient has midline tenderness to palpation.

Cite this article as: iEM Education Project Team, "A 57-year-old man fell from a height comes with neck pain," in International Emergency Medicine Education Project, June 14, 2019, https://iem-student.org/2019/06/14/a-57-year-old-man-fell-from-a-height-comes-with-neck-pain/, date accessed: December 8, 2019