COVID-19 Pandemic: Rural Preparations

Hoping for the best while preparing for the worst has been the theme of all medical institutes around the world, especially in counties that are yet to be hit by the dreaded tsunami of overwhelming COVID-19 cases. We have 191 positive cases 153 of which are in the hospital being treated and 33 have recovered. Fortunately, there have been no mortalities till date. [1] The current statistic may not look dreadful given the large numbers that we are exposed to daily these days. Before the cases reached 100, most Nepalese wondered, sometimes boastfully, why the cases are not spreading like wildfire. People went on record, crediting our culture of greeting with Namaste instead of a handshake, eating with hand instead of a spoon – which necessitates handwashing at least 4 times a day, the hygiene hypothesis, the fact that our country has only one international airport, and the universal coverage of BCG vaccination in Nepal. There are too many biases and heuristics at play here, but somewhere inside, I want to believe that at least some of them are true.

The Sukraraj Infectious and Tropical Disease Hospital (STIDH) in Teku, Kathmandu has been designated by the Government of Nepal (GoN) as the primary hospital along with Patan Hospital and the Armed Police Forces Hospital in the Kathmandu Valley. The Ministry of Health and Population (MoHP) has requested the 25 hubs and satellite hospital networks across the country – designated for managing mass casualty events – to be ready with infection prevention and control measures, and critical care beds where available. The Government is allocating spaces for quarantine purposes throughout the country and some sites have already been populated by migrants who recently returned from India. [2]

We have seen healthcare systems that are multi-fold advanced than that of our crumble when faced head-on with this illness. After working in the healthcare system of my country for 2 years, I am convinced that it will take a miracle for us to deal with this pandemic.

I have seen what preparations we are striving towards and what portion of it has been achieved. We are struggling to reach our preparation goals. That is not nearly as frustrating as the fact that many countries whose baseline was our goal have failed terribly. Today keeping the theme of workarounds rather than complaints about things outside of our circle of influence, I am presenting to you some preparatory works being done at Beltar PHC, a peripheral center located in one of the most affected districts, Udayapur, of Nepal. [1]

Credit, where credit is due: We have done 17878 RT-PCR, and 58546 RDT to find 191 positive cases till May 12, 2020. [1] We came up with a protocol and are also gradually updating it to meet the contemporary need. Funny word that contemporary is, especially now that no information gets to age before a new one replaces it. Speaking of temporary, a very recurring theme these days, there are temporary shelters made at every ward level in Beltar. People returning from abroad are kept in isolation for 14 days there. We run a temporary fever clinic at the PHC and refer suspected cases to higher centers for the COVID-19 test. We don’t have rapid diagnostic kits at the PHC yet. Our PHC with 26 staff has received 13 disposable PPEs that we have had the privilege of reusing. There is an Interim reporting form for suspected cases of COVID-19 (based on WHO Minimum Data Set Report Form) which can be downloaded and filled from the MOHP website. [3]

Available PPE at PHC level. Photo credit: Mr. Govinda Khadka
Fever clinic at Beltar PHC. Photo credit: Mr. Govinda Khadka
Quarantine setup at a ward in Chaudandigadi Municipality. Photo credit: Mr. Govinda Khadka

Lockdown was announced in Nepal on March 24, 2020. Excerpt from WHO Director-General’s opening remarks at the media briefing [4] on COVID-19, 25 March 2020 says this: “Asking people to stay at home and shutting down population movement is buying time and reducing the pressure on health systems. But on their own, these measures will not extinguish epidemics. The point of these actions is to enable the more precise and targeted measures that are needed to stop transmission and save lives. We call on all countries who have introduced so-called “lockdown” measures to use this time to attack the virus. You have created a second window of opportunity. The question is, how will you use it? There are six key actions that we recommend:

  1. Expand, train and deploy your health care and public health workforce;
  2. Implement a system to find every suspected case at the community level;
  3. Ramp up the production, capacity, and availability of testing;
  4. Identify, adapt and equip facilities you will use to treat and isolate patients;
  5. Develop a clear plan and process to quarantine contacts;
  6. Refocus the whole of government on suppressing and controlling COVID-19.”

In Nepal, there has been documentation of protocol for various aspects of the pandemic; PPE for each level of care has been decided, need to scale up the testing recognized, and even the support for Solidarity trials discussed. The protocol designed to tackle COVID-19 recognizes that different strategies for the rural and urban areas are necessary. The response to outbreaks in remote and rural areas where containment may be easier though assistance more difficult vs. outbreak in urban locations where containment is likely more difficult, but treatment and assistance likely to be easier.

The mist of immediate threat followed by the rubble of destruction it causes keeps us blind to the problems lurking in the background. As big and dangerous, if not bigger. Especially when you know nothing even vaguely similar to CARES-Act is being prepared for dampening the direct and indirect economic impact of the epidemic. Add to the fact that the American government’s CARES-Act already faces various criticism—that gives birth to anxiety for even the most seasoned economists. That is looking at just one domain of the post epidemic future. Healthcare might be crippled, social structure tossed over, politics somersaulted and people stripped off their faith. That may give rise to a jigsaw too complicated to attempt. It is high time we start thinking about solving some of those puzzles now.

References

1. Corona Info. Ministry of Health and Population. Accessed May 12, 2020. https://covid19.mohp.gov.np/#/
2. COVID-19 Nepal preparedness and response plan (NPRP) draft. April 9. Accessed May 10, 2020. https://www.who.int/docs/default-source/nepal-documents/novel-coronavirus/covid-19-nepal-preparedness-and-response-plan-(nprp)-draft-april-9.pdf?sfvrsn=808a970a_2
3. Reporting form for COVID. Accessed May 12, 2020. http://edcd.gov.np/resources/download/reporting-form-for-covid
4. Situation reports on COVID-19 outbreak, 25 March 2020. WHO | Regional Office for Africa. Accessed May 12, 2020. https://www.afro.who.int/publications/situation-reports-covid-19-outbreak-25-march-2020

COVID19 Info for Medical Students

In our recent communication with Lecturio, we learned that they have a good set of free chapters and videos about COVID19. We would like to share with you.

Read from here – https://www.lecturio.com/covid-19-coronavirus-disease-2019/

List of videos here – https://www.lecturio.com/medical-courses/covid-19-overview-management.course#/

Free Videos From Lecturio

Coronavirus 2019

SARS and COVID19

Mortality Rate

Detection Bias

For more free COVID19 videos from Lecturio, please visit – https://www.youtube.com/playlist?list=PLVnjTkEwv-uOxdymJaccUdT3LapvnrL61

You may want to read these posts in iEM too

Cite this article as: iEM Education Project Team, "COVID19 Info for Medical Students," in International Emergency Medicine Education Project, April 3, 2020, https://iem-student.org/2020/04/03/covid19-info-for-medical-students/, date accessed: May 30, 2020

19 Questions and Answers on the COVID-19 Pandemic from a Emergency Medicine-based Perspective

covid 19 - from a Emergency Medicine-based Perspective

1) What is COVID-19?

Corona Virus Disease 2019 (COVID-19) is the disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

2) What is SARS-CoV-2?

SARS-CoV-2 is a virus belonging to the Coronaviridae family. Spike proteins (S proteins) on the outer surface of SARS-CoV-2 are arranged in a way that resembles the appearance of a crown when viewed under an electron microscope (see Figure 1). S proteins facilitate viral entry into host cells by binding to the angiotensin-converting enzyme 2 (ACE2) host receptor. Several cell types express the ACE2 receptor, including lung alveoli cells. [1].

Morphology of the SARS-CoV-2
Figure 1 - Morphology of the SARS-CoV-2 viewed under an electron microscope.Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion. (https://phil.cdc.gov/Details.aspx?pid=23312)

3) How is SARS-CoV-2 transmitted?

Viral particles can spread from person-to-person through airborne transmission (e.g., large droplets) or direct contact(e.g., touching, shaking hands). We have to remember that large droplets are particles with a diameter > 5 microns and that they can be spread by coughing, sneezing, talking, etc., so do not forget to wear full PPE in the Emergency Department (ED). Other potential routes of transmission are still being investigated.

4) What is the incubation time?

In humans, the incubation period of the SARS-CoV-2 varies from 4 days to 14 days, with a median of about 4 days [2].

5) Can we say the COVID-19 is like the seasonal flu?

No, we can’t say that. COVID-19 differs from the flu in several ways:

  • First of all, SARS-CoV-2 replicates in the lower respiratory tract at the level of the pulmonary alveoli (terminal alveoli). In contrast, Influenza viruses, the causative agents of the flu, replicate in the mucosa of the upper respiratory tract.
  • Secondly, SARS-CoV-2 is a new virus that has never met our adaptive immune system.
  • Thirdly, we do not currently have an approved vaccine to prevent infection by SARS-CoV-2.
  • Lastly, we do not currently have drugs of proven efficacy for the treatment of disease caused by SARS-CoV-2.

6) Who is at risk of contracting the COVID-19?

We are all susceptible to contracting the COVID-19, so it is essential that everyone respects the biohazard prevention rules developed by national and international health committees. Elderly persons, patients with comorbidities (e.g., diabetics, cancer, COPD, and CVD), and smokers appear to exhibit poor clinical outcome and greater mortality from COVID-19 [3]

7) What are the symptoms of the COVID-19?

There are four primary symptoms of COVID-19: feverdry coughfatigue; and shortness of breath (SOB).

Other symptoms are loss of appetite, muscle and joint pain, sore throat, nasal congestion and runny nose, headache, nausea and vomiting, diarrhea, anosmia, and dysgeusia.

8) What is the severity of symptoms from COVID-19?

In most cases, COVID-19 mild or moderate symptoms, so much so it can resolve after two weeks of rest at home. However, onset of severe viral pneumonia requires hospital admission.

9) Which COVID-19 patients we should admit to the hospital?

The onset of severe viral pneumonia requires hospital admission. COVID-19-associated pneumonia can quickly evolve into respiratory failure, resulting in decreased gas exchange and the onset of hypoxia (we can already detect this deterioration in gas exchange with a pulse oximeter at the patient’s home). This clinical picture can rapidly further evolve into ARDS and severe multi-organ failure.

The use of the PSI/PORT score (or even the MuLBSTA score, although this score needs to be validated) can help us in the hospital admission decision-making process.

10) Do patients with COVID-19 exhibit laboratory abnormalities?

Most patients exhibit lymphocytopenia [11], an increase in prothrombin time, procalcitonin (> 0.5 ng/mL), and/or LDH (> 250 U/L).

11) Are there specific tests that allow us to diagnose COVID-19?

RT-PCR is a specific test that currently appears to have high specificity but not very high sensitivity [12]. We can obtain material for this test from nasopharyngeal swabs, tracheal aspirates of intubated patients, sputum, and bronchoalveolar lavages (BAL). However, the latter two procedures increase the risk of contagion.

However, since rapid tests are not yet available, RT-PCR results may take days to obtain, since laboratory activity can quickly saturate during epidemics. Furthermore, poor pharyngeal swabbing technique or sampling that occurs during the early stage of COVID-19 can lead to further decreased testing sensitivity.

Consequently, for the best patient care, we must rely on clinical symptoms, labs, and diagnostic imaging (US, CXR, CT). The use of a diagnostic flowchart can be useful (see Figure 2).

diagnostic flow chart
Figure 2 - A possible diagnostic flow chart for an ill patient admitted to hospital with suspected COVID-19 (from EMCrit Blog)

12) Can lung ultrasound help diagnose COVID-19?

Yes, it can help! The use of POCUS lung ultrasound is a useful method both in diagnosis and in real-time monitoring of the COVID-19 patient.

In addition, we could monitor the patient not only in the emergency department (ED) or intensive care unit (ICU), but also in a pre-hospital setting, such as in the home of a patient who is in quarantine.

In fact, POCUS lung ultrasounds not only allows one to anticipate further complications such as lung consolidation from bacterial superinfection or pneumothorax, but it also allows detection of viral pneumonia at the early stages. Furthermore, the use of a high-frequency ultrasound probe, which is an adoption of the 12-lung areas method [4] and the portable ultrasound (they are easily decontaminated), allow this method to be repeatable, inexpensive, easy to transport, and radiation-free.

There are no known pathognomonic patterns of COVID-19.

The early stages COVID-19 pneumonia results in peripheral alveolar damage including alveolar edema and a proteinaceous exudate [5]. This interstitial syndrome can be observed via ultrasound by the presence of scattered B lines in a single intercostal space (see videos below).

Subsequently, COVID-19 pneumonia progression leads to what’s called “white lung”, which ultrasound represents as converging B lines that cover the entire area of the intercostal space; they start from the pleura to end at the bottom of the screen.

Finally, the later stages of this viral pneumonia lead to “dry lung”, which consists of a pattern of small consolidations (< 1 cm) and subpleural nodules. Unlike bacterial foci of infection, these consolidations do not create a Doppler signal within the lesions. We should consider the development from “white lung” to “dry lung” as an unfavorable evolution of the disease.[6]

(the 5 videos above come from the COVID-19 gallery on the Butterflynetwork website)

13) Can CXR/CT help us in the diagnosis of COVID-19?

Yes, it can help! There are essentially three patterns we observed in COVID-19.

In the early stages, the main pattern is ground-glass opacity (GGO)[7]. Ground glass opacity is represented at the lung bases with a peripheral distribution (see videos below) .

The second pattern is constituted by consolidations, which unlike ground-glass opacity, determine a complete “opacification” of the lung parenchyma. The greater the extent of consolidations, the greater the severity and the possibility of admission in ICU.

The third pattern is called crazy paving[8]. It is caused by the thickening of the pulmonary lobular interstitium.

However, we should consider four things when we do a CXR/CT exam. First, many patients, especially in the elderly, exhibit multiple, simultaneously occurring pathologies, so it is possible to clinically observe nodular effusions, lymph node enlargements, and pleural effusions that are not typical of COVID-19 pneumonia. Secondly, we have to be aware that other types of viral pneumonia can also cause GGO, so they cannot be excluded during the diagnostic process. Thirdly, imaging can help evaluate the extent of the disease and alternative diagnoses, but we cannot use it exclusively for diagnosis. Lastly, we should carefully assess the risk of contagion from transporting these patients to the CT room.

14) What is the treatment for this type of patient?

COVID-19 patients quickly become hypoxic without many symptoms (apparently due to “silent” atelectasis). Therapy for these clinical manifestations is resuscitation and support therapy. In patients with mild respiratory insufficiency, oxygen therapy is adopted. In severe patients in which respiratory mechanics are compromised, non-invasive ventilation (NIV) or invasive ventilation should be adopted.

15) How can we non-invasively manage the airways of patients with COVID-19?

In the presence of a virus epidemic, we should remember that all the procedures that generate aerosolization (e.g., NIV, HFNC, BMV, intubation, nebulizers) are high-risk procedures.

Among the non-invasive oxygenation methods, the best-recommended solution is to have patients wear both a high-flow nasal cannula (HFNC) and a surgical mask[9]. Still, we should also consider using CPAP with a helmet interface. Furthermore, we should avoid the administration of medications through nebulization or utilize metered-dose inhalers with spacer (Figure 3).

Figure 3 – General schema for Respiratory Support in Patients with COVID-19 (from PulmCrit Blog)

16) How can we invasively manage the airways of patients with COVID-19?

We should intubate as soon as possible, even in non-critical conditions (Figure 3). Intubation is a high contagion risk procedure. As a result, we should adopt the highest levels of precaution[10]. To be more precise:

  • As healthcare operator, we should wear full PPE. Only the most skilled person at intubation in the staff should intubate. Furthermore we should consider using a video laryngoscope. Last but not least, we should ensure the correct positioning of the endotracheal tube without a stethoscope (link HERE).
  • The room where intubation occurs should be a negative pressure room. When that is not feasible, the room should have doors closed during the intubation procedure.
  • The suction device  should have a closed-circuit so as not to generate aerosolization outside.
  • Preoxygenation should be done using means that do not generate aerosols. Let us remember that HFNC and BVM both can generate aerosolization. So, it is important to remember to turn off the flow of the HFNC before removing it from the patient face to minimize the risk and to use a two-handed grip when using BVM, interposing an antiviral filter between the BVM and resuscitation bag and ventilating gently.
  • Intubation drugs that do not cause coughing should be used. In addition, we should evaluate the use of Rocuronium in the Rapid Sequence Intubation (RSI) since it has a longer half-life compared to succinylcholine and thus prevents the onset of coughing or vomiting.

In conclusion, let us remember that intubation, extubation, bronchoscopy, NIV, CPR prior to intubation, manual ventilation etc. produce aerosolization of the virus, therefore, it is necessary that we wear full PPE.

17) What is the drug therapy for COVID-19?

Currently, there is no validated drug therapy for COVID-19. Some drugs are currently under study. They include Remdesivir (blocks RNA-dependent RNA polymerase), Chloroquine and Hydroxychloroquine (both block the entry of the virus into the endosome), Tocilizumab and Siltuximab (both block IL-6).

18) Is there a vaccine available for COVID-19?

No, there is still no vaccine currently available to the public.

19) What precautions should we take with COVID-19 infected patients?

As healthcare professionals, we should wear full personal protective equipment (PPE) and know how to wear them (“DONning”) and how to remove them properly (“DOFFing”) (see video below). Furthermore, we should wear full PPE for the entire shift and when in contact with patients with respiratory problems.

Resources on COVID-19

Cite this article as: Francesco Adami, Italy, "19 Questions and Answers on the COVID-19 Pandemic from a Emergency Medicine-based Perspective," in International Emergency Medicine Education Project, March 27, 2020, https://iem-student.org/2020/03/27/19-questions-and-answers-on-the-covid-19/, date accessed: May 30, 2020

References

[1] Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. NatRev Cardiol. 2020 Mar 5.

[2] del Rio C, Malani PN. COVID-19—New Insights on a Rapidly Changing Epidemic. JAMA. Published online February 28, 2020. doi:10.1001/jama.2020.3072

[3] Yee J et al. Novel coronavirus 2019 (COVID-19): Emergence and Implications for Emergency Care. Infectious Disease 2020. https://doi.org/10.1002/emp2.12034

[4] Belaïd Bouhemad, Silvia Mongodi, Gabriele Via, Isabelle Rouquette; Ultrasound for “Lung Monitoring” of Ventilated Patients. Anesthesiology 2015;122(2):437-447. doi: https://doi.org/10.1097/ALN.0000000000000558.

[5] Qian-Yi Peng, Xiao-Ting Wang, Li-Na Zhang & Chinese Critical Care Ultrasound Study Group (CCUSG). Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. 12 March 2020 Intensive Care Medicine.

[6]  Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020.

[7] Chest CT Findings in Cases from the Cruise Ship “Diamond Princess” with Coronavirus Disease 2019 (COVID-19)

[8] Radiographic and CT Features of Viral Pneumonia Hyun Jung Koo, Soyeoun Lim, Jooae Choe, Sang-Ho Choi, Heungsup Sung, and Kyung-Hyun Do RadioGraphics 2018 38:3, 719-739 doi: https://doi.org/10.1148/rg.2018170048

[9]  WHO – Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected.

[10] Safe Airway Society. Consensus Statement: Safe Airway Society Principles of Airway management and Tracheal Intubation Specific to the COVID-19 Adult Patient Group. MJA 2020.

[11] GUAN WJ, Ni ZY, Hu Y, Liang WH, et al  Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Feb 28. doi: 10.1056/NEJMoa2002032

[12] Tao Ai et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, published online February 26, 2020; doi: 10.1148/radiol.2020200642

COVID-19 vs Influenza: A Diagnostic Dilemma

covid 19 vs influenza

During the last two months, the world experienced an outbreak of what was known to be an unknown yet contagious virus, The Coronavirus, namely COVID-19. News circulated about the virus being spread in China, and the number of people affected increased daily. While there was panic in China, other parts of the world were alert and anticipating a few occurrences, but definitely not as much as the situation is today.

Eventually, as the numbers increased, number of hospital staff who started wearing masks and taking necessary precautions increased, anticipating the arrival of the disease into their regions, until a few days later, there was news of the virus being spread to different countries, new cases emerging from different parts of the world, the case fatality rate rising, infection control rules became stricter and this was the start of what has lead the COVID-19 to be announced as a pandemic by the World Health Organization.

While researches are being conducted, treatments are being tested, one of the biggest dilemmas physicians are facing, is to differentiate between Coronavirus and Flu caused by Influenza virus. The latter being a more known and common cause of flu during the winter months.

When news of the coronavirus created alarm in the general public, there was an influx of patients in the Emergency Departments all around the world, most of them being travelers with flu symptoms and airport staff. Since little was known about the virus then, standard infection control protocols were applied as a general rule until a diagnosis and the severity of illness was sought.This created another issue, could this be seasonal flu, or was it Corona? The decision was harder amongst people in extremes of age. When the disease had just been discovered, testing and results took time and little was known, unlike what the situation is today where countries such as South Korea are offering drive-through tests, with results within 24 hours.

This added to the importance of knowing the differences and similarities between the two to provide adequate management and treatment.

Similarities

  1. Transmitted by contact, droplets and fomites.
  2. Both require precautions such as good hand and respiratory hygiene
  3. Both cause mild to severe respiratory illness
  4. People are commonly affected in winter

Differences

  1. Influenza virus has additional symptoms such as muscle aches and fatigue whereas COVID-19 can present with diarrhea
  2. Influenza has a shorter incubation period as compared to COVID-19 (2-14 days)
  3. According to current data, children, women and elderly are more affected by influenza, whereas COVID-19 causes more severe illness in the elderly and those who are immunocompromised and those suffering from underlying medical conditions
  4. COVID-19 is being known to have a higher mortality rate as compared to influenza
  5. Annual vaccines and antiviral agents are effective against influenza, and there is currently no proven treatment for COVID-19
  6. People who have flu caused by influenza are most contagious in the first 3-4 days after contacting the illness

Overview of the COVID- 19

It belongs to the family of Coronaviruses, which may cause illness in animals or humans. In humans, several coronaviruses are known to cause respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). COVID-19 is the newest type discovered in Wuhan, China, in December 2019.

Method of transmission: is respiratory droplets from the nose or mouth of a person who is infected by the virus (coughs/sneezes within 1 meter).
Incubation period: 1-14 days

Symptoms, Diagnosis and Treatment

The most common symptoms of COVID-19 are fever, tiredness, and dry cough. Some patients may have aches and pains, nasal congestion, runny nose, sore throat, or diarrhea. Around 1 out of every six people who get COVID-19 becomes seriously ill and develops difficulty breathing.

Diagnosis: Nasopharyngeal swab, sputum culture
Chest Xray and CT: Bilateral chest infiltrates, consolidation (pneumonia)
Treatment: Symptomatic until a proven treatment is discovered.

Prevention

The four essential steps:
W – wash hands
A – avoid physical contact and public places
S – sterilize and sanitize regularly
H – hygiene is essential.

Cover your nose or mouth with your bent elbow or tissue while sneezing and dispose of the used tissue immediately.

Wear a mask when you have symptoms of flu to prevent spreading the illness.

Cite this article as: Sumaiya Hafiz, UAE, "COVID-19 vs Influenza: A Diagnostic Dilemma," in International Emergency Medicine Education Project, March 25, 2020, https://iem-student.org/2020/03/25/covid-19-vs-influenza/, date accessed: May 30, 2020

References

A simple cellulitis of the foot?

a simple cellulitis of the foot?

Case Introduction

A 47 year old woman comes to a community ED complaining of pain and redness in her right foot developing quickly over two days. She denies any trauma and otherwise feels well. She is not sure, but may have had a “sore” near her toes that has already healed. Patient has diabetes but is normoglycemic. She has no prior history of cellulitis, joint infections or gout. There is no history of immunocompromise, including steroids, or any IV drug use. All vitals are within normal limits and review of systems is negative for fever, chills, respiratory or gastrointestinal symptoms.

On exam, there is generalized edema, erythema and tenderness, but no tenderness out of proportion, and no open sores or ulcerations. A sub-acute appearing callus is apparent on the plantar surface opposite fifth and fourth distal metatarsals. The ankle joint is tender but less so than the foot, and ranging it does not elicit more pain than at baseline. Distal sensation, pulses and toe motion are intact, though capillary refill is slightly delayed.

cellulitis - foot
cellulitis - foot 2

Initial Questions

  • What would be your plan?  And when and how would you present this case to an attending?
  • Are labs indicated, which ones, and what are they expected to show?  Will that change your plan?
  • Any imaging? Your choices range from nothing, to bedside US to look for an abscess, to XR, CT scan or even an MRI, if available.
  • Is she a candidate for oral antibiotics and discharge? If so, what sort of follow up does she need?
  • Is there any benefit of IV antibiotics if the patient is going to go home?
  • What is the worst case scenario here that may not be apparent? Is there any threat to life, limb or both?

Basic labs obtained are unremarkable and patient is receiving IV broad spectrum antibiotics, including MRSA coverage. Plain films are obtained, and there is some concern for small air pockets in the soft tissues.

cellulitis - xray 2
cellulitis - xray

A phone consultation with podiatry is obtained. A decision is made to take the patient to the OR on the same evening. No further imaging or diagnostic studies are advised.

Additional Questions

  • What if there is no podiatry, and your general or orthopedic surgeon does not handle foot cases? What if there is no surgical coverage at all?
  • Would there be a role for a limited ED I&D or needle aspiration in this case?
  • Would you transfer this case? How do you justify it, if all the labs and vitals are normal?

After the callus is taken off in the OR, large amount of frank pus is obtained that tracks all the way to the third metatarsal. A debridement is performed, and long term antibiotics with close follow up are needed. Overall impression was that while no necrotizing infection was found, any further delay would have risked a trans-metatarsal amputation (at the least).

Key Points

While we do not have room for a lengthy discussion on differentiating plain cellulitis from “other”, it is worthwhile to note several things:

  • Do not get locked in onto cellulitis as the diagnosis. Abscesses, necrotizing infections and septic joints need to be considered and ruled out at all times.
  • Susceptible populations such as diabetics and IV drug users are easy.  But the rapidity of symptom development is just as important in any population.
  • Beware even chronic appearing calluses as masking places for pus and as barriers to its natural drainage.
  • More advanced imaging is not always the answer. Careful exam, plain films and the OR is often the right answer too. Labs are overrated. Period.
  • More advanced imaging is not always the answer. Careful exam, plain films and the OR is often the right answer too. Labs are overrated. Period.
  • To I&D or not to I&D is often the question. Good news is that more often than not I&D is the right answer. There is a reason you have already thought of it. You are in the ED - the last line of defense for many patients. Pus needs to come out. The surgeons are not the only guys with knives. Don’t let yourself or anyone talk you out of it. For the tremulous patients (and providers), there is ketamine.
Cite this article as: Anthony Rodigin, USA, "A simple cellulitis of the foot?," in International Emergency Medicine Education Project, February 7, 2020, https://iem-student.org/2020/02/07/educational-case-a-simple-cellulitis-of-the-foot/, date accessed: May 30, 2020

Further Reading

Cellulitis – Clinical Image and Ultrasound

cellulitis

Case Presentation

A 45-years-old male with a week history of right leg swelling and redness presented to the ED. He has type II DM and hypertension. He denies fever; however, complaints about burning pain over the skin. Vitals were 156/98 mmHg blood pressure, 98 beats per minute heart rate, 16 respiration per minute, 36.7 degrees Celsius temperature and 98% oxygen saturation in room air. Physical exam revealed erythema over the right medial lower leg and calf area (images). Minimally painful with palpation. The area was hot compared to the left leg. Other examination findings were unremarkable.

Cellulitis 2

Cellulitis 1

Patients with red, swollen, painful leg may have very severe problems such as necrotizing fasciitis (infection involving muscular fascia) or infections involving muscles with or without gangrene. The patients having these infections are generally ill-looking, severely painful, and may have subcutaneous crepitations. Therefore, we should be aware of these red flags. This patient has no sign of crepitations, systemic illness, or severe pain.

Lipodermatosclerosis is chronic erythema. Patients show exacerbations because of vascular insufficiency (venous). It can be bilateral or unilateral. One of the discriminative findings from cellulitis is temperature over the lesion. Lipodermatosclerosis is not hot. In the case, the palpation showed warm skin compared to the left side.

Erysipelas is superficial and its’ borders are very sharp. The lesion is fluffy compared to the skin around the lesion. In the case, some areas of the skin were found a little bit raised compared to surrounding structures. However, its’ borders were not well-demarcated.

Other differentials are burns, contact dermatitis, urticaria, etc.

Bedside ultrasound imaging can help to identify cellulitis, abscess, foreign body, fracture, etc. Cobblestone finding is a typical finding for cellulitis.

Bedside ultrasound imaging was performed with Butterfly iQ with soft tissue settings. Cobblestone finding was found in the erythematous areas. This is a nonspecific finding and can be seen many different soft tissue infections. There were no gas/air artifacts (necrotizing fasciitis) or obvious abscess formation. However, there was a minimal fluid accumulation, which creates a suspicion of an abscess. In the case, there was no air artifact. However, x-rays can also help to show air accumulation in soft tissues.

An Example for Necrotizing Fasciitis

The ultrasound investigation in this video shows the air (white) artifacts in the soft tissue.

X-ray Image Showing Subcutaneous Air in Necrotizing Fasciitis

Case courtesy of Dr Matt Skalski, Radiopaedia.org. From the case rID: 25026

For mild uncomplicated patients – dicloxacillin, amoxicillin, and cephalexin are common choices.

If the patient has a penicillin allergy – clindamycin or a macrolide (clarithromycin or azithromycin) can be used.

Fluoroquinolones should be reserved for gram-negative organisms’ sensitivity defined by culture results because of their additional toxicity risks.

For more antibiotic options and explanations, please visit – here

The patients with co-morbidities compromising immune response, periorbital or perianal locations, unable to tolerate oral medication, deep infections should be admitted.

References and Further Reading

  • Loyer EM, DuBrow RA, David CL, Coan JD, Eftekhari F. Imaging of superficial soft-tissue infections: sonographic findings in cases of cellulitis and abscess. AJR Am J Roentgenol. 1996 Jan;166(1):149-52. PubMed PMID: 8571865.
  • Shyy W, Knight RS, Goldstein R, Isaacs ED, Teismann NA. Sonographic Findings in Necrotizing Fasciitis: Two Ends of the Spectrum. J Ultrasound Med. 2016 Oct;35(10):2273-7. doi: 10.7863/ultra.15.12068. Epub 2016 Aug 31. PubMed PMID: 27582527.
Cite this article as: Arif Alper Cevik, "Cellulitis – Clinical Image and Ultrasound," in International Emergency Medicine Education Project, December 2, 2019, https://iem-student.org/2019/12/02/cellulitis-clinical-image-and-ultrasound/, date accessed: May 30, 2020

Purple Rain: A Rare Spot Diagnosis

Purple rain urine

Case Presentation

A 70-year-old pleasant elderly male was brought in by his son, surprisingly complaining of purple-colored urine. The son got worried once he saw the purple urine bag and rushed his dad to the Emergency Department.

Upon further questioning, he reports a sweet elderly gentleman, known with previous cerebrovascular accidents, dysphasia and neurogenic bladder, that he has a urinary catheter inserted for. He claims that his dad has been having low appetite and passing less stool in the past week. Otherwise, he didn’t notice any other alarming symptoms. Furthermore, he denied noticing any fever, vomiting, behavioral changes indicating any pain, or recent change in his medications or diet. He had no known allergies as well. Upon full review of symptoms, chronic constipation was appreciated, otherwise, it was unremarkable.

Physical Exam

The patient was lying in bed, a bit uncomfortable, with an attached urinary catheter bag. He was afebrile and vitally stable. Proceeding with a focused physical examination, his chest was clear, and abdomen was soft, lax and nontender, furthermore, his skin had no rashes, and limbs were non-edematous. Inspecting the Urine Catheter Collection Bag, it did reveal Purple Urine Sediment.

Purple Urine in the Urinary Catheter Bag
Purple Urine in the Urinary Catheter Bag

Differential Diagnosis and Workup

Thinking of differential diagnoses of discolored urine, a purple urine bag is almost a spot diagnosis in our practice, definitely after ruling out any possible confounders if any.

We reassured the family and explained to them that we would order some blood and urine tests to confirm the diagnosis and start the appropriate treatment plan.

Case Management and Disposition

Laboratory test revealed mild leukocytosis with neutrophilia and mild elevated CRP. Otherwise, his urea, creatinine, liver function tests and electrolytes were reported normal.

Furthermore, a urine dipstick was done in the ED that reported positive for leukocytes, nitrites, and consequently sent to the lab for culture and full analysis which confirmed the diagnosis of a urinary tract infection (UTI).

We informed the son of the workup results, and a diagnosis of a UTI, given his leukocytosis, positive urine dipstick and the presence of a urinary catheter putting him at risk UTI. We reassured him about the urine color and explained the need to start antibiotics to cover the UTI, and changes the urinary catheter, which left us to explain only why was the urine purple unlike usual cases of UTI’s.

Critical Thinking and Take-home Tips

What is PUBS?

  • PUBS stands for Purple Urinary Bag Syndrome, first described in 1978.(1)
  • It is characterized by purple-colored urine collecting in urinary catheterization bags in patients known to prolonged urinary catheters. 
  • It presents asymptomatically and it is associated with urinary tract infections.
  • PUBS presents alarmingly to patients and family members, yet it is a benign phenomenon.

What causes the purplish discoloration of the urine in PUBS?

  • PUBS is associated with alkaline urine with a high bacterial load. 
  • It results due to UTI with certain bacteria producing sulphatases and phosphatases, which lead tryptophan metabolism to produce indigo (blue) and indirubin (red) pigments, a mixture of which becomes purple. (2)
  • Several bacterial species have been reported in association with PUBS including Providencia stuartii, Providencia rettgeri, Klebsiella pneumoniae, Proteus species, Escherichia coli, Enterococcus species, Morganella morganii, and Pseudomonas aeruginosa. (3)

What are the PUBS risk factors?

  • Female gender
  • Bedridden status or immobility
  • Chronic constipation leading to bacterial overgrowth
  • Renal disease
  • Prolonged urinary catheterization

What is PUBS management?

  • The reassurance of patient and family
  • Regular changing of urinary catheter
  • UTI Antibiotics coverage

What other urine colors should we be aware of?

  • Urine discoloration if a fairly common sign and indicates a certain pathology often that would need your attention as a physician.
  • Most urine discoloration is caused by food intakes, medications, dyes, or specific disease pathologies.
  • Red-colored urine is often related to hematuria, caused by multiple pathologies, including kidney stones, urinary tract injury or infection or cancer, amongst others.
  • Pink colored urine is often related to certain medications or dietary intake, i.e. beetroots and berries.
  • Brown or tea-colored urine indicates hepatobiliary disease or obstruction.
  • Green Urine can result due to medications such as Propofol.

What should I do when I encounter a discolored urine finding in my patient?

  • Remember always to have a systematic approach. 
  • Take a full history, including types or changes in medications history, diet changes, past medical history, and a full review of systems.
  • Keep in mind, some patients who are bedridden or elderly, communication and history taking might be limited; hence you will have to do your due diligence in gathering all the information you can get from family members, or available medical charts.
  • Your physical exam is a great asset as well in collecting information that can help you 

References and Further Reading

  1. Khan F, Chaudhry MA, Qureshi N, Cowley B. Purple urine bag syndrome: An Alarming Hue? A Brief Review of the Literature. Int J Nephrol 2011. 2011 419213. [PMC free article] [PubMed] [Google Scholar]
  2. Kalsi DS, Ward J, Lee R, Handa A. Purple Urine Bag Syndrome: A Rare Spot Diagnosis. Dis Markers. 2017;2017:9131872. doi:10.1155/2017/9131872
  3. Dilraj S. Kalsi, Joel Ward, Regent Lee, and Ashok Handa, “Purple Urine Bag Syndrome: A Rare Spot Diagnosis,” Disease Markers, vol. 2017, Article ID 9131872, 6 pages, 2017. https://doi.org/10.1155/2017/9131872.
  4. Al Montasir A, Al Mustaque A. Purple urine bag syndrome. J Family Med Prim Care. 2013;2(1):104–105. doi:10.4103/2249-4863.109970
  5. Traynor B P, Pomeroy E, Niall D. Purple urine bag syndrome: a case report and review of the literature. Oxford Medical Case Reports, Volume 2017, Issue 11, November 2017, omx059, https://doi.org/10.1093/omcr/omx059
  6. Lin CH, Huang HT, Chien CC, Tzeng DS, Lung FW. Purple urine bag syndrome in nursing homes: Ten elderly case reports and a literature review. Clin Interv Aging. 2008;3:729–34. [PMC free article] [PubMed] [Google Scholar]
Cite this article as: Shaza Karrar, UAE, "Purple Rain: A Rare Spot Diagnosis," in International Emergency Medicine Education Project, September 20, 2019, https://iem-student.org/2019/09/20/purple-rain-a-rare-spot-diagnosis/, date accessed: May 30, 2020

The Research of Predicting Septic Shock

How computational medicine is changing critical care in 5 questions

Participating in Research

As a new school year approaches, many medical students are opting to take a gap year dedicated to research. This trend is unique for students not in MD/PhD programs in the USA who have a deep interest in understanding and participating in research. A popular emerging field for the future of health care and medicine, known as computational medicine, is become an integral part of patient care. Regardless of location, students, as well as interns and health care professionals around the globe who are interested in emergency and critical care medicine, should consider this unique area of study as a part of their research gap year.

In this blog entry for the International Emergency Medicine Education Project (iEM), I discuss the role of computational medicine in detecting sepsis, one of the most important diagnoses to detect early, with Professor Rai Winslow, Director of the Institute for Computational Medicine at The Johns Hopkins University. As outlined on the Institute’s website, computational medicine “aims to improve health care by developing computational models of disease, personalizing these models using data from patients, and applying these models to improve the diagnosis and treatment of disease.” Patient models are being used to predict and discover novel sensitive and specific risk biomarkers, predict disease progression, design optimal treatments, and discover novel drug targets. Applications include cardiovascular and neurological diseases, cancer, and critical care and emergency medicine (1).

Rai L Winslow, Director Institute for Computational Medicine, The Raj & Neera Singh Professor of Biomedical Engineering, The Johns Hopkins University

How is computational medicine changing critical care?

5 Questions

5 Answers

Why Sepsis

What was the starting point for your work on sepsis and septic shock in adults?

A starting point for my work on sepsis and septic shock was reading a paper that demonstrated how every hour of delayed treatment in patients with septic shock could lead to an eight percent increase in mortality, per hour. That statement really stood out because what it told me was the natural time course of evolution of the disease, and whatever was happening in septic shock, was happening very quickly. Because of this rapid disease progression, this suggested that accurate prediction of those patients with sepsis who would progress to septic shock must be based on data collected from the patient on a time scale of minutes rather than hours. The challenge was that this high-rate data is not routinely collected in hospitals.

Data and algorithms

What live data are the algorithms capturing from patients for studying and understanding sepsis and septic shock?

Today’s electronic health record (EHR) is typically used to store data such as vitals and lab results and clinical observations made at irregular intervals and at low rates. Given the rapid evolution of septic shock, we hypothesized that advanced prediction and early detection of septic shock must be based on data collected at the minute rather than hour time scales. This was the driving interest in developing a novel software platform called PhysioCloud. PhysioCloud captures physiological vital signs data at minute intervals from patient monitors. These data are then stored in a specialized database that is designed to capture large numbers of real-time data streams at high-rate. Data collection also includes waveforms, such as ECG, respiratory rates, and SpO2, sampled at 125 times per second. Nowhere else in the USA that I am aware of, is capturing these physiological data from patients, making them a part of the patient electronic health record. Our algorithm uses these high rate data, as well as low-rate data from the patient EHR, to predict those patients with sepsis who will develop septic shock.

The importance of the transition state to septic shock

Computational medicine and algorithms can be uncomfortable terms for medical students, interns and researchers who do not have experience with it. Simply put, how do research and studies such as this help doctors in emergency medicine and critical care units, in managing their patients?

Everyday critical care and emergency medicine physicians ask two questions of every patient they see: what is the state of my patient?; how will their state change over time? The latter is a prediction problem of the sort that data scientists often confront. In the context of sepsis, the physician would like to know if their patient will at some future time develop septic shock, or will their condition improve. If an algorithm can reliably predict those patients with sepsis who will develop septic shock at some future time point, then physicians will have a window of time in which they can intervene to prevent this transition from happening. Our goal was to develop such an algorithm. To do this, we utilized the obvious fact that if a patient has sepsis and their condition is getting worse and possibly evolving towards septic shock, it means their physiology must be changing over time as they get sicker. We, therefore, decided to develop a “risk score,” a number ranging between 0 and 1 that is the probability that a patient will develop septic shock. This risk score was computed in an optimal way from the minute by minute physiological vital signs data complemented by clinical data from the EHR. If this risk score exceeds a threshold value, then we decide that this patient with sepsis will develop septic shock at some future time point. This approach works very reliably, achieving high sensitivity and specificity. It’s the worlds simplest machine learning method. Predicting the transition from sepsis to septic shock can enable physicians the ability to follow their patients and see how various states are evolving over time, so that they can intervene to deliver earlier care. Right now, this approach is being applied in retrospective studies using patient data. In the future, we plan to compute this risk score in real-time, generating alerts for caregivers when the risk score exceeds threshold signaling that patients are likely to go into septic shock.

Pre-Shock

In a recent publication in Scientific Report (2), the new concept of a pre-shock state was outlined. How was this possible to do?

Our work hypothesized that it was possible to identify the presence of a physiological signature in sepsis patients before the clinical onset of septic shock was diagnosed. We were able to identify a signature to calculate a risk score for the pre-shock state. The changes in variables such as lactate and heart rate are so small; they are still statistically significant, but so small. When discussed with physicians, some say that they would not have noticed it. These variables are changing together in a small way, but the algorithm is able to catch the changes together and compute it into a risk score and make useful predictions. Some of our very new work not published yet shows that post-threshold, changes in patient risk score happen very quickly (30-60 minutes) and are very large. We have shown that the larger the post-threshold risk score, the more reliable is our prediction that the patient will go into shock. Positive predictive value can be as high as 80-90%.

Fluids and Vasopressors

Evidence-based studies and protocols such as the SOFA score (3), Surviving Sepsis Campaigns (4) are listed on the American College of Emergency Physician (ACEP) website (5) as well as the SALT-ED (6) and SMART (7) trials. These are referred to by emergency physicians in the emergency department, and EM residents are trained with these resources. How do these studies tie into computational medicine, machine learning and predictive analysis for developing septic shock?

Our algorithm looked at tens of thousands of patients, and computationally phenotyped them through every minute of data using the international consensus definition of septic shock, and based on early warning times, found clinical ground truth. We also discovered that the Sepsis 2 definition had a property that was temporarily unstable. This is to say that the state of a patient with sepsis as defined by Sepsis 2, was changing all the time, and it was not possible to predict ground truth. With found the Sepsis 3 definitions to be temporarily stable with few state transitions. The major factor was that the criteria in Sepsis 2 had included a diagnosis of SIRS before sepsis was considered as a diagnosis, and it was removed from 3. We believe that SIRS was causing frequent state changes, as an ambiguous diagnosis.

We are able to predict those patients with sepsis who will transition to shock many hours before they go into shock. We are also able to identify distinct temporal patterns of the risk score corresponding to patient populations with high (up to 60%) versus low (10-20%) mortality. For each of these groups, we looked at comorbidities, diagnoses such as kidney failure and cancer, but we do not know what the relationship is or what is different about these patient groups and the fact that they are in the 60% mortality pool. We know their physiology is saying they are in the mortality pool, but not why. What this means is how these patients are being treated could be the issue (physicians with different levels of training, and other factors involved in treatment decisions). In our work, patients were classified into high and low risk. We found that patients in the low risk received vasopressors and adequate fluid resuscitation and for patients in the high-risk pool, fewer had received vasopressors or fluids. The question is, why are these patients not getting these things. Our algorithm to predict the transition to septic shock can positively influence treatment decisions made by many physicians, to confirm the value of treatment and prevent the development of septic shock. We’ve also identified and know the time to look for proteomic and genomic biomarkers for the early predictive shock signature that could correlate with this high risk/these measures are not routinely done clinically, and this line of work could be very helpful in understanding the fundamental biology of the very rapid change in patient state when they cross the risk score threshold.

Thank you to Professor Winslow for taking the time to discuss the research involved in computational medicine and investigating the transition from sepsis to septic shock. In closing, regardless of medical specialty interests, medical students around the globe interested in taking a gap year to gain research skills will find the experience invaluable and will be introduced to new ways of thinking, writing, and understanding the scientific influences on patient management and health care. Research such as this in the USA can also be implemented at international hospitals and remote clinics, to further aid patient care and management. There are many areas of interest in which research is taking place in critical care units and emergency departments, and discovering the technology involved such as machine learning and computational medicine, is a step towards understanding the potential advances in the future of medicine and patient care.

Please feel free to share your own particular research area(s) of interest and pose any questions you may have in the comments section below.

References and Further Reading

  1. The Institute for Computational Medicine (ICM) –  https://icm.jhu.edu/
  2. Liu R, Greenstein JL, Granite SJ, Fackler JC, Bembea MM, Sarma SV, Winslow RL. Data-driven discovery of a novel sepsis pre-shock state predicts impending septic shock in the ICU. Scientific reports. 2019 Apr 16;9(1):6145. – https://www.nature.com/articles/s41598-019-42637-5.pdf
  3. Faust J. No SIRS; quick SOFA instead. Annals of Emergency Medicine. 2016 May 1;67(5). – https://www.annemergmed.com/article/S0196-0644(16)00216-X/pdf
  4. Surviving Sepsis Campaign (SSC) – http://www.survivingsepsis.org/Pages/default.aspx
  5. ACEP Statement on SSC Hour-1 Bundle – https://www.acep.org/by-medical-focus/sepsis/
  6. Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, Slovis CM, Lindsell CJ, Ehrenfeld JM, Siew ED, Shaw AD. Balanced crystalloids versus saline in noncritically ill adults. New England Journal of Medicine. 2018 Mar 1;378(9):819-28. – https://www.nejm.org/doi/full/10.1056/NEJMoa1711586
  7. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, Stollings JL, Kumar AB, Hughes CG, Hernandez A, Guillamondegui OD. Balanced crystalloids versus saline in critically ill adults. New England Journal of Medicine. 2018 Mar 1;378(9):829-39. –  https://www.nejm.org/doi/full/10.1056/NEJMoa1711584
Cite this article as: Bryn Dhir, USA, "The Research of Predicting Septic Shock," in International Emergency Medicine Education Project, August 12, 2019, https://iem-student.org/2019/08/12/the-research-of-predicting-septic-shock-how-computational-medicine-is-changing-critical-care-in-5-questions/, date accessed: May 30, 2020

Open fracture! Antibiotic choice.

ERic Motorcycle accident

A 20-year-old male presents to your ED with a 5 cm wound after he fell off his motorbike. On physical exam, the wound overlays a fractured left tibia but does not show extensive soft tissue damage nor any signs of periosteal stripping or vascular injury. 

Which antibiotic should you give to this patient?

To learn more about it, read chapters below.

Read "Scores" Chapter
Read "Lower Extremity Injuries" Chapter

Quick Read

Gustilo-Anderson Classification

Gustilo-Anderson classification is used for fractures with open wounds and antibiotic coverage.

Gustilo-Anderson Classification

TypeDefinition
Type IOpen fracture, clean wound, wound <1cm in length
Type IIOpen fracture, wound >1cm in length without extensive soft tissue damage, flaps, avulsions
Type IIIOpen fracture with extensive soft tissue laceration, damage, or loss or an open segmental fracture. This type also includes open fractures caused by farm injuries, fractures requiring vascular repair, or fractures that have been open for 8 hours prior to treatment.
Type III AType III fracture with adequate periosteal coverage of the fractured bone despite extensive soft tissue laceration or damage
Type III BType III fracture with extensive soft tissue loss and periosteal stripping and bone damage. Usually associated with massive contamination. It will often need further soft tissue coverage procedure (i.e. free or rotational flap).
Type III CType III fracture associated with arterial injury requiring repair, irrespective of degree of soft tissue injury

According to the above classification, each class should receive the following antibiotics:

  • Type I: 1st generation cephalosporin
  • Type II: 1st generation Cephalosporin +/- Gentamycin
  • Type III: 1st generation Cephalosporin + Gentamycin +/- Penicillin

To learn more about it, read chapters below.

Read "Scores" Chapter
Read "Lower Extremity Injuries" Chapter

Selected Infection Topics

Selected Infectious Problems recommended from SAEM and IFEM undergraduate curriculum are uploaded into the website. More specific disease entities are on the way.

Epiglottitis

by Kuan Win Sen   Case Presentation A 62-year-old man presents to the ambulatory area of the emergency department complaining of sore throat, fever, and chills.

Read More »

Meningitis

by Alja Parežnik Introduction Meningitis is an inflammation of the membranes of the brain and spinal cord. It can be related to infectious and noninfectious

Read More »

Sepsis

by Emilie J. Calvello Hynes   Introduction and Definitions In the last 20 years, the collective understanding of sepsis care has gone through a major

Read More »

Sinusitis

by Katja Žalman and Gregor Prosen   Introduction Sinusitis is one of the most common infections treated by emergency physicians and affects about 1 in 8

Read More »

Do you need more?

A new chapter – Meningitis

131 - LP - lumbar puncture

Meningitis chapter written by Alja Pareznik from Slovenia is just uploaded to the Website!

Epiglottitis chapter –

Case courtesy of Dr Maxime St-Amant, Radiopaedia.org. From the case rID: 26840

Epiglottitis chapter written by Kuan Win Sen from Singapore is just uploaded to the Website!