Death on the Roads

Death on the Roads

Save the date:

Why? Because road victims will be remembered that day. Starting from 2005, The World Day of Remembrance for Road Traffic Victims is held on the third Sunday of November each year to remember those who died or were injured from road crashes (1).

Road traffic injuries kill more than 1.35 million people every year and they are the number one cause of death among 15–29-year-olds. There are also over 50 million people who are injured in non-fatal crashes every year. These also cause a real economic burden. Total cost of injuries is as high as 5% of GDP in some low- and middle-income countries and cost 3% of gross domestic product (2). It is also important to note that there has been no reduction in the number of road traffic deaths in any low-income country since 2013.

The proportion of population, road traffic deaths, and registered motor vehicles by country income, 2016 (Source: Global Status Report On Road Safety 2018, WHO)

Emergency care for injury has pivotal importance in improving the post-crash response. “Effective care of the injured requires a series of time-sensitive actions, beginning with the activation of the emergency care system, and continuing with care at the scene, transport, and facility-based emergency care” as outlined in detail in World Health Organization’s (WHO) Post-Crash Response Booklet.

As we know, the majority of deaths after road traffic injuries occur in the first hours following the accident. Interventions performed during these “golden hours” are considered to have the most significant impact on mortality and morbidity. Therefore, having an advanced emergency medical response system in order to make emergency care effective is highly essential for countries.

Various health components are used to assess the development of health systems by country. Where a country is placed in these parameters also shows the level of overall development of that country. WHO states that 93% of the world’s fatalities related to road injuries occur in low-income and middle-income countries, even though these countries have approximately 60% of the world’s vehicles. This statistic shows that road traffic injuries may be considered as one of the “barometer”s to assess the development of a country’s health system. If a country has a high rate of road traffic injuries, that may clearly demonstrate the country has deficiencies of health management as well as infrastructure, education and legal deficiencies.

WHO has a rather depressing page showing numbers of deaths related to road injuries. (Source: Death on the Roads, WHO, https://extranet.who.int/roadsafety/death-on-the-roads/ )

WHO is monitoring progress on road safety through global status reports. Its’ global status report on road safety 2018 presents information on road safety from 175 countries (3).

We have studied the statistics presented in the report and made two maps (All countries and High-income countries) illustrating the road accident death rate by country (per 100,000 population). You can view these works below (click on images to view full size).

References and Further Reading

  1. Official website of The World Day of Remembrance, https://worlddayofremembrance.org
  2. WHO. Road traffic injuries – https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
  3. WHO. Global status report on road safety 2018 – https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
Cite this article as: Ibrahim Sarbay, "Death on the Roads," in International Emergency Medicine Education Project, November 1, 2019, https://iem-student.org/2019/11/01/death-on-the-roads/, date accessed: November 11, 2019

Trauma in Pregnancy

Trauma in pregnancy

Trauma remains the leading cause of morbidity and mortality in pregnant women. It increases the risk of preterm delivery, placenta abruption, fetomaternal hemorrhage, and pregnancy loss. Motor Vehicle Accidents (MVAs) account for 70% of blunt abdominal trauma, then comes falls and direct assaults.

Evaluating and managing pregnant trauma patients requires knowing some physiological changes in pregnancy.

Physiological changes in pregnancy

  • Maternal blood volume increases at 10 weeks and reaches a peak level at 28 weeks (45%)
  • Mild anemia because of increased plasma volume (plasma > red blood cells)
  • Cardiac output increases by 1-1.5L/min at 10 weeks until the end of pregnancy
  • Heart rate increases by 10-20 beats/min at the 2nd trimester + decrease in the blood pressure (BP) by 10-15 mmHg. This explains the late deterioration in dropping BP; they may lose 30-40% of blood before signs of hypotension
  • Uterine blood flow = maternal mean arterial pressure
  • At 12 weeks, the uterus becomes an intra-abdominal organ, which is susceptible to direct injuries
  • The bladder becomes anterior
  • Gravid uterus causes stretching to the abdominal wall
  • At 18-20 weeks, an expanding mass of gravid uterus causes hypotension in the supine position by compressing the IVC. Avoid placing IV lines in the femoral/lower extremities.
  • Diaphragm elevated 4 cm, which makes the tidal volume increase by 40%, residual volume decreases by 25%, which causes the short apnea time in pregnant patients
  • Splenic injury is a common cause of hemorrhage

Important actions in pregnant trauma patients

  • Apply supplemental oxygen early because of compensation of hypoxia is limited
  • Consider early intubation
  • 50% more fluids are needed for volume replacement
  • At 20 weeks, place wedge under the right hip, tilting to 30 degrees during the transfer on trauma board
  • Early nasogastric tube placement to avoid aspiration
  • Avoid pressors, which causes uteroplacental hypoperfusion

Rhogam (Rh immunoglobulin) and Tetanus Prophylaxis

Administer RhoD (Human Rho(D) immune globulin) to Rh-negative women; 50 mcg for <12 weeks, 300 mcg for >12 weeks. Tetanus prophylaxis is safe but considered as category C.

Images and Radiation Exposure

Do not withhold needed images. The greatest risk to fetal viability from ionizing radiation is within the first 2 weeks after conception and the highest malformation during the embryogenic organogenesis at 2-8 weeks. The risk of central nervous system teratogenesis is highest at 8-16 weeks. A dose of 5 rad is the threshold for human teratogenesis. Plain radiographs is <1 rad. Abdominal CT + Pelvic angio has the highest dose of rad (2.5-3.5). One of the critical problems is the abruption of the placenta, and CT is sensitive for abruption placenta, 86%, and has 98% specificity. The iodine contrast could cross the placenta and causing neonatal hypothyroidism.

Pelvic exam can be done only after performing an ultrasound to determine the placenta location and exclude placenta previa.

Special Tests

Vaginal fluid pH. If the pH is 7, it is amniotic fluid. If the pH is 5, it is vaginal secretions. Ferning on microscope slide = amniotic fluid.

APT ( alkali denaturation) test is qualitative evaluation to determine the presence of fetal Hg in maternal blood.

Kleihauer-Betke test measures fetal hemoglobin transfer to mothers’ blood.

Specific Issues

  • Direct fetal injuries

    It is rare. It can be seen some injuries such as maternal pelvic fractures, direct trauma to the fetal skull.

  • Uterine rupture

    It is less than 1%. It may be seen at late second and third trimester. It is associated with high fetal mortality. The palpation of fetal parts over the abdomen and radiological evidence of abnormal fetal location determine rupture.

  • Uterine rupture

    It is less than 1%. It may be seen at late second and third trimester. It is associated with high fetal mortality. The palpation of fetal parts over the abdomen and radiological evidence of abnormal fetal location determine rupture.

  • Uterine irritability

    The sign of the onset of preterm labor. Avoid using tocolytics; it causes tachycardia for both mother and fetus.

  • Placental abruption

    1-5% from minor injuries, 40-50% of major injuries. Even simple falls can cause sudden fetal demise. Most sensitive clinical findings; uterine irritability, which can be explained by having more than 3 contractions per hour at the ED.

Fetal viability

The fetus will likely be viable at 24 weeks and above.
The normal fetal heart rate is 120-160 bpm. Heart rate below and above these limits is critical. Because ultrasound may not detect placenta abruption, nor rupture or fetal-placental injuries, high-suspicion and close monitorization are necessary.

Cardiotocography (CTG)

4-6 hours will be enough for most of the cases. Persistent contractions or uterine irritability needs an external CTG for 24 hrs. Fewer than 3 contractions per hour could indicate a safe discharge.

Indication for Emergency C-Section

  • Fetal tachycardia.
  • Lack of beat to beat on long term viability.
  • Late deceleration = fetal distress.

C-section has a 75% survival rate in 26 weeks or above. If the fetal heartbeats are present and the procedure was performed early, the success rate is higher.

References and Further Reading

  • Tintinalli, J., Stapczynski, J., Ma, O. J., Cline, D., Cydulka, R., & Meckler, G. (2010). Tintinalli’s emergency medicine: a comprehensive study guide: a comprehensive study guide. McGraw Hill Professional.

 

Cite this article as: AlHanouv AlQahtani, "Trauma in Pregnancy," in International Emergency Medicine Education Project, October 25, 2019, https://iem-student.org/2019/10/25/trauma-in-pregnancy/, date accessed: November 11, 2019

From Experts To Our Students! – Clinical Decision Tools

Clinical Decision Rules chapter written by Stacey Chamberlain from USA is just uploaded to the Website!