Question Of The Day #17

question of the day
qod17

Which of the following is the most likely cause for the patient’s elevated cardiac troponin level in the emergency department?

Elevated cardiac troponin levels, or troponinemia, are one sign that the myocardium may be infarcting or under some type of stressful condition. Cardiac troponin levels are assessed in conjunction with the clinical history, physical exam, EKG, and another laboratory testing in deciding if troponinemia is due to cardiac ischemia or another condition. Conditions associated with elevated cardiac troponin levels include cardiac ischemia (i.e. STEMI, NSTEMI), cardiac contusion, cardiac procedures, congestive heart failure, renal failure, aortic dissection, tachy- or bradyarrhythmias, rhabdomyolysis with cardiac injury, Takotsubo syndrome, pulmonary embolism, acute stroke, myocarditis, sepsis, severe burns, extreme exertion, and other conditions. It is unlikely that this patient had elevated troponin levels from Acute coronary syndrome (Choice D) as her cardiac catheterization results showed no significant occlusive lesions in the coronary arteries. D-Dimer levels do increase with patient age, but cardiac troponin levels do not increase with patient age (Choice B). Sepsis (Choice C) is a cause for elevated troponin levels, but this patient has no clinical signs or sepsis symptoms. Atrial fibrillation with a rapid rate (Choice A) is the most likely cause of this patient’s elevated troponin level. Correct Answer: A 

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #17," in International Emergency Medicine Education Project, October 16, 2020, https://iem-student.org/2020/10/16/question-of-the-day-17/, date accessed: September 25, 2021

You may want to read these

Question Of The Day #16

question of the day
qod16

Which of the following is the most appropriate next step in management for this patient’s condition?

This patient sustained a penetrating traumatic injury to the left chest and presented to the emergency department with hemodynamic instability (tachycardic and hypotensive). Some differential diagnoses to consider on arrival include tension pneumothorax, cardiac tamponade, aortic injury, or aero-digestive tract injury. Prior to taking a detailed history on any trauma patient, a primary survey should be performed. The goal of the primary survey in a trauma patient is to identify and treat any life-threatening injuries as soon as possible. The primary survey is also known as the “ABCs.” Sometimes it is referred to as the “ABCDEFs.” This acronym stands for Airway, Breathing, Circulation, Disability, Exposure, and FAST exam (How to learn eFAST exam for free). Each letter is addressed and assessed in the order they exist in the alphabet. This creates a methodical, algorithmic approach to assist the practitioner in assessing the trauma patient for life-threatening injuries. The sonographic view shown in this question is the subxiphoid (cardiac) view and demonstrates the presence of free fluid. Free fluid on ultrasound appears black, or “anechoic” and is assumed to be blood in the setting of trauma. The free fluid is highlighted by red stars in the image below. The collapse of the right ventricle is shown by the yellow arrow in the below image.

cardiac tamponade - explained
SS Video 3 Pericardial Tamponade

In conjunction with hemodynamic instability and a history of penetrating chest trauma, this sonographic view strongly supports the diagnosis of cardiac tamponade. Consulting the general surgery team for exploratory laparotomy (Choice A) would be the correct course of action for a patient with hemodynamic instability and free fluid on the other abdominal views of the FAST exam. Needle decompression of the chest (Choice B) would be the correct initial treatment for a tension pneumothorax. The patient described in the case has clear bilateral lung sounds, no tracheal deviation mentioned, normal O2 saturation on room air, and sonographic demonstration of cardiac tamponade. A CT scan of the chest, abdomen, and pelvis (Choice D) would be indicated in this patient if he had normal vital signs and no free fluid on the FAST exam. A pericardiocentesis (Choice C) is the most appropriate next step in the management of this patient with cardiac tamponade to relieve signs of obstructive shock. It should be noted that this procedure has limitations and is not always effective. Pericardiocentesis is a temporizing treatment with pericardiotomy being the definitive therapy. Blood in an acute hemopericardium may clot and be unable to be aspirated with a large-bore needle. The procedure may injure surrounding organs, such as the liver, intestines, or heart itself. Ultrasound-guidance should be used whenever possible to avoid injury to surrounding organs. Emergent thoracotomy to relieve the cardiac tamponade should be performed on any patient with confirmed cardiac tamponade and cardiac arrest in the Emergency Department. Correct Answer: C

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #16," in International Emergency Medicine Education Project, October 9, 2020, https://iem-student.org/2020/10/09/question-of-the-day-16/, date accessed: September 25, 2021

You may want to read these

Rapid Ultrasound for Shock and Hypotension (RUSH) Protocol US Imaging – Illustrations

Patients with hypotension or shock have high mortality rates, and traditional physical exam techniques can be misleading. Diagnosis and initial care must be accurate and prompt to optimize patient care. Ultrasound is ideal for evaluating critically ill patients in shock, and ACEP guidelines now delineate a new category of ultrasound (US)– “resuscitative.” Bedside US allows for direct visualization of pathology and differentiation of shock states (1). The RUSH is one of the most commonly used protocols for this purpose.

The RUSH exam involves a 3-part bedside physiologic assessment simplified as “the pump,” “the tank,” and “the pipes” (2).

Pump

Tank

Rush Tank

Pipes

References and Further Reading

  1. By Organ System or Specialty Archives | Page 84 of 123 | ALiEM. https://www.aliem.com/category/emergency-medicine-clinical/system/page/84/
  2. Seif D1, Perera PMailhot TRiley DMandavia D. “Bedside ultrasound in resuscitation and the rapid ultrasound in shock protocol” Crit Care Res Pract. 2012;2012:503254.
  3. https://iem-student.org/2020/02/14/lower-extremity-deep-venous-us-imaging-illustrations/
  4. https://iem-student.org/rush/
  5. https://iem-student.org/efast/
Cite this article as: Murat Yazici, Turkey, "Rapid Ultrasound for Shock and Hypotension (RUSH) Protocol US Imaging – Illustrations," in International Emergency Medicine Education Project, May 29, 2020, https://iem-student.org/2020/05/29/rush-protocol-illustrations/, date accessed: September 25, 2021

19 Questions and Answers on the COVID-19 Pandemic from a Emergency Medicine-based Perspective

covid 19 - from a Emergency Medicine-based Perspective

1) What is COVID-19?

Corona Virus Disease 2019 (COVID-19) is the disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

2) What is SARS-CoV-2?

SARS-CoV-2 is a virus belonging to the Coronaviridae family. Spike proteins (S proteins) on the outer surface of SARS-CoV-2 are arranged in a way that resembles the appearance of a crown when viewed under an electron microscope (see Figure 1). S proteins facilitate viral entry into host cells by binding to the angiotensin-converting enzyme 2 (ACE2) host receptor. Several cell types express the ACE2 receptor, including lung alveoli cells. [1].

Morphology of the SARS-CoV-2
Figure 1 - Morphology of the SARS-CoV-2 viewed under an electron microscope.Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion. (https://phil.cdc.gov/Details.aspx?pid=23312)

3) How is SARS-CoV-2 transmitted?

Viral particles can spread from person-to-person through airborne transmission (e.g., large droplets) or direct contact(e.g., touching, shaking hands). We have to remember that large droplets are particles with a diameter > 5 microns and that they can be spread by coughing, sneezing, talking, etc., so do not forget to wear full PPE in the Emergency Department (ED). Other potential routes of transmission are still being investigated.

4) What is the incubation time?

In humans, the incubation period of the SARS-CoV-2 varies from 4 days to 14 days, with a median of about 4 days [2].

5) Can we say the COVID-19 is like the seasonal flu?

No, we can’t say that. COVID-19 differs from the flu in several ways:

  • First of all, SARS-CoV-2 replicates in the lower respiratory tract at the level of the pulmonary alveoli (terminal alveoli). In contrast, Influenza viruses, the causative agents of the flu, replicate in the mucosa of the upper respiratory tract.
  • Secondly, SARS-CoV-2 is a new virus that has never met our adaptive immune system.
  • Thirdly, we do not currently have an approved vaccine to prevent infection by SARS-CoV-2.
  • Lastly, we do not currently have drugs of proven efficacy for the treatment of disease caused by SARS-CoV-2.

6) Who is at risk of contracting the COVID-19?

We are all susceptible to contracting the COVID-19, so it is essential that everyone respects the biohazard prevention rules developed by national and international health committees. Elderly persons, patients with comorbidities (e.g., diabetics, cancer, COPD, and CVD), and smokers appear to exhibit poor clinical outcome and greater mortality from COVID-19 [3]

7) What are the symptoms of the COVID-19?

There are four primary symptoms of COVID-19: feverdry coughfatigue; and shortness of breath (SOB).

Other symptoms are loss of appetite, muscle and joint pain, sore throat, nasal congestion and runny nose, headache, nausea and vomiting, diarrhea, anosmia, and dysgeusia.

8) What is the severity of symptoms from COVID-19?

In most cases, COVID-19 mild or moderate symptoms, so much so it can resolve after two weeks of rest at home. However, onset of severe viral pneumonia requires hospital admission.

9) Which COVID-19 patients we should admit to the hospital?

The onset of severe viral pneumonia requires hospital admission. COVID-19-associated pneumonia can quickly evolve into respiratory failure, resulting in decreased gas exchange and the onset of hypoxia (we can already detect this deterioration in gas exchange with a pulse oximeter at the patient’s home). This clinical picture can rapidly further evolve into ARDS and severe multi-organ failure.

The use of the PSI/PORT score (or even the MuLBSTA score, although this score needs to be validated) can help us in the hospital admission decision-making process.

10) Do patients with COVID-19 exhibit laboratory abnormalities?

Most patients exhibit lymphocytopenia [11], an increase in prothrombin time, procalcitonin (> 0.5 ng/mL), and/or LDH (> 250 U/L).

11) Are there specific tests that allow us to diagnose COVID-19?

RT-PCR is a specific test that currently appears to have high specificity but not very high sensitivity [12]. We can obtain material for this test from nasopharyngeal swabs, tracheal aspirates of intubated patients, sputum, and bronchoalveolar lavages (BAL). However, the latter two procedures increase the risk of contagion.

However, since rapid tests are not yet available, RT-PCR results may take days to obtain, since laboratory activity can quickly saturate during epidemics. Furthermore, poor pharyngeal swabbing technique or sampling that occurs during the early stage of COVID-19 can lead to further decreased testing sensitivity.

Consequently, for the best patient care, we must rely on clinical symptoms, labs, and diagnostic imaging (US, CXR, CT). The use of a diagnostic flowchart can be useful (see Figure 2).

diagnostic flow chart
Figure 2 - A possible diagnostic flow chart for an ill patient admitted to hospital with suspected COVID-19 (from EMCrit Blog)

12) Can lung ultrasound help diagnose COVID-19?

Yes, it can help! The use of POCUS lung ultrasound is a useful method both in diagnosis and in real-time monitoring of the COVID-19 patient.

In addition, we could monitor the patient not only in the emergency department (ED) or intensive care unit (ICU), but also in a pre-hospital setting, such as in the home of a patient who is in quarantine.

In fact, POCUS lung ultrasounds not only allows one to anticipate further complications such as lung consolidation from bacterial superinfection or pneumothorax, but it also allows detection of viral pneumonia at the early stages. Furthermore, the use of a high-frequency ultrasound probe, which is an adoption of the 12-lung areas method [4] and the portable ultrasound (they are easily decontaminated), allow this method to be repeatable, inexpensive, easy to transport, and radiation-free.

There are no known pathognomonic patterns of COVID-19.

The early stages COVID-19 pneumonia results in peripheral alveolar damage including alveolar edema and a proteinaceous exudate [5]. This interstitial syndrome can be observed via ultrasound by the presence of scattered B lines in a single intercostal space (see videos below).

Subsequently, COVID-19 pneumonia progression leads to what’s called “white lung”, which ultrasound represents as converging B lines that cover the entire area of the intercostal space; they start from the pleura to end at the bottom of the screen.

Finally, the later stages of this viral pneumonia lead to “dry lung”, which consists of a pattern of small consolidations (< 1 cm) and subpleural nodules. Unlike bacterial foci of infection, these consolidations do not create a Doppler signal within the lesions. We should consider the development from “white lung” to “dry lung” as an unfavorable evolution of the disease.[6]

(the 5 videos above come from the COVID-19 gallery on the Butterflynetwork website)

13) Can CXR/CT help us in the diagnosis of COVID-19?

Yes, it can help! There are essentially three patterns we observed in COVID-19.

In the early stages, the main pattern is ground-glass opacity (GGO)[7]. Ground glass opacity is represented at the lung bases with a peripheral distribution (see videos below) .

The second pattern is constituted by consolidations, which unlike ground-glass opacity, determine a complete “opacification” of the lung parenchyma. The greater the extent of consolidations, the greater the severity and the possibility of admission in ICU.

The third pattern is called crazy paving[8]. It is caused by the thickening of the pulmonary lobular interstitium.

However, we should consider four things when we do a CXR/CT exam. First, many patients, especially in the elderly, exhibit multiple, simultaneously occurring pathologies, so it is possible to clinically observe nodular effusions, lymph node enlargements, and pleural effusions that are not typical of COVID-19 pneumonia. Secondly, we have to be aware that other types of viral pneumonia can also cause GGO, so they cannot be excluded during the diagnostic process. Thirdly, imaging can help evaluate the extent of the disease and alternative diagnoses, but we cannot use it exclusively for diagnosis. Lastly, we should carefully assess the risk of contagion from transporting these patients to the CT room.

14) What is the treatment for this type of patient?

COVID-19 patients quickly become hypoxic without many symptoms (apparently due to “silent” atelectasis). Therapy for these clinical manifestations is resuscitation and support therapy. In patients with mild respiratory insufficiency, oxygen therapy is adopted. In severe patients in which respiratory mechanics are compromised, non-invasive ventilation (NIV) or invasive ventilation should be adopted.

15) How can we non-invasively manage the airways of patients with COVID-19?

In the presence of a virus epidemic, we should remember that all the procedures that generate aerosolization (e.g., NIV, HFNC, BMV, intubation, nebulizers) are high-risk procedures.

Among the non-invasive oxygenation methods, the best-recommended solution is to have patients wear both a high-flow nasal cannula (HFNC) and a surgical mask[9]. Still, we should also consider using CPAP with a helmet interface. Furthermore, we should avoid the administration of medications through nebulization or utilize metered-dose inhalers with spacer (Figure 3).

Figure 3 – General schema for Respiratory Support in Patients with COVID-19 (from PulmCrit Blog)

16) How can we invasively manage the airways of patients with COVID-19?

We should intubate as soon as possible, even in non-critical conditions (Figure 3). Intubation is a high contagion risk procedure. As a result, we should adopt the highest levels of precaution[10]. To be more precise:

  • As healthcare operator, we should wear full PPE. Only the most skilled person at intubation in the staff should intubate. Furthermore we should consider using a video laryngoscope. Last but not least, we should ensure the correct positioning of the endotracheal tube without a stethoscope (link HERE).
  • The room where intubation occurs should be a negative pressure room. When that is not feasible, the room should have doors closed during the intubation procedure.
  • The suction device  should have a closed-circuit so as not to generate aerosolization outside.
  • Preoxygenation should be done using means that do not generate aerosols. Let us remember that HFNC and BVM both can generate aerosolization. So, it is important to remember to turn off the flow of the HFNC before removing it from the patient face to minimize the risk and to use a two-handed grip when using BVM, interposing an antiviral filter between the BVM and resuscitation bag and ventilating gently.
  • Intubation drugs that do not cause coughing should be used. In addition, we should evaluate the use of Rocuronium in the Rapid Sequence Intubation (RSI) since it has a longer half-life compared to succinylcholine and thus prevents the onset of coughing or vomiting.

In conclusion, let us remember that intubation, extubation, bronchoscopy, NIV, CPR prior to intubation, manual ventilation etc. produce aerosolization of the virus, therefore, it is necessary that we wear full PPE.

17) What is the drug therapy for COVID-19?

Currently, there is no validated drug therapy for COVID-19. Some drugs are currently under study. They include Remdesivir (blocks RNA-dependent RNA polymerase), Chloroquine and Hydroxychloroquine (both block the entry of the virus into the endosome), Tocilizumab and Siltuximab (both block IL-6).

18) Is there a vaccine available for COVID-19?

No, there is still no vaccine currently available to the public.

19) What precautions should we take with COVID-19 infected patients?

As healthcare professionals, we should wear full personal protective equipment (PPE) and know how to wear them (“DONning”) and how to remove them properly (“DOFFing”) (see video below). Furthermore, we should wear full PPE for the entire shift and when in contact with patients with respiratory problems.

Resources on COVID-19

Cite this article as: Francesco Adami, Italy, "19 Questions and Answers on the COVID-19 Pandemic from a Emergency Medicine-based Perspective," in International Emergency Medicine Education Project, March 27, 2020, https://iem-student.org/2020/03/27/19-questions-and-answers-on-the-covid-19/, date accessed: September 25, 2021

References

[1] Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. NatRev Cardiol. 2020 Mar 5.

[2] del Rio C, Malani PN. COVID-19—New Insights on a Rapidly Changing Epidemic. JAMA. Published online February 28, 2020. doi:10.1001/jama.2020.3072

[3] Yee J et al. Novel coronavirus 2019 (COVID-19): Emergence and Implications for Emergency Care. Infectious Disease 2020. https://doi.org/10.1002/emp2.12034

[4] Belaïd Bouhemad, Silvia Mongodi, Gabriele Via, Isabelle Rouquette; Ultrasound for “Lung Monitoring” of Ventilated Patients. Anesthesiology 2015;122(2):437-447. doi: https://doi.org/10.1097/ALN.0000000000000558.

[5] Qian-Yi Peng, Xiao-Ting Wang, Li-Na Zhang & Chinese Critical Care Ultrasound Study Group (CCUSG). Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. 12 March 2020 Intensive Care Medicine.

[6]  Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020.

[7] Chest CT Findings in Cases from the Cruise Ship “Diamond Princess” with Coronavirus Disease 2019 (COVID-19)

[8] Radiographic and CT Features of Viral Pneumonia Hyun Jung Koo, Soyeoun Lim, Jooae Choe, Sang-Ho Choi, Heungsup Sung, and Kyung-Hyun Do RadioGraphics 2018 38:3, 719-739 doi: https://doi.org/10.1148/rg.2018170048

[9]  WHO – Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected.

[10] Safe Airway Society. Consensus Statement: Safe Airway Society Principles of Airway management and Tracheal Intubation Specific to the COVID-19 Adult Patient Group. MJA 2020.

[11] GUAN WJ, Ni ZY, Hu Y, Liang WH, et al  Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Feb 28. doi: 10.1056/NEJMoa2002032

[12] Tao Ai et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, published online February 26, 2020; doi: 10.1148/radiol.2020200642

Lower Extremity Deep Venous US Imaging – Illustrations

lower extremity us illustrations

Ultrasound evaluation for deep venous thrombosis (DVT) is one of the 11 core ultrasound applications for emergency physicians as listed in the 2008 American College of Emergency Physicians guidelines (1). Because ultrasound applications started to be implemented into medical school curriculum in many countries, learning basic ultrasound applications as early as possible will benefit medical students and junior residents. In this post, I will share lower extremity venous ultrasound illustrations with you. 

Indications

The clinical indications for performing a lower venous ultrasound examination is the suspicion of a lower extremity DVT in a swollen or discoloured leg. 

Transducer

Select a high-frequency linear transducer, (5-10) MHz transducer since it provides optimal venous copmression and image resolution.

lower extremity venous ultrasound - linear transducer

Remember Risk Factors of DVT

Wells Score for Deep Vein Thrombosis

CriteriaScore
Active cancer(treatment ongoing or within previous 6 months or palliative treatment)
1
Paralysis, paresis, or recent plaster immobilization or of the lower extremities1
Recently bedridden for 3 days or more or major surgery within the previous 12 weeks requiring general or regional anesthesia1
Localized tenderness along the distribution of the deep venous system1
Entire leg swollen1
Calf swelling > 3cm compared to asymptomatic leg (measuring 10 cm below tibial tuberosity)1
Pitting edema confined to the symptomatic leg1
Non varicose collateral superficial veins1
Previously documented DVT1
Alternative diagnosis at least as likely as DVT1
DVT evaluation algorithm
Select a high-frequency linear transducer, (5-10) MHz transducer since it provides optimal venous copmression and image resolution.
sectional anatomy of lower extremity veins

Normal DVT Ultrasound Findings

normaL DVT ULTRASOUND findings
normaL DVT ULTRASOUND findings
normaL DVT ULTRASOUND findings
normaL DVT ULTRASOUND findings
normaL DVT ULTRASOUND findings

Reference and Further Reading

  1. American College of Emergency Physicians. Emergency ultrasound guidelines 2008. http://www.acep.org/WorkArea/DownloadAsset.aspx?ID=32878. February 2012.

Note: Visual drawings are inspired by the Point-of-Care ULTRASOUND Book.

Cite this article as: Murat Yazici, Turkey, "Lower Extremity Deep Venous US Imaging – Illustrations," in International Emergency Medicine Education Project, February 14, 2020, https://iem-student.org/2020/02/14/lower-extremity-deep-venous-us-imaging-illustrations/, date accessed: September 25, 2021

You may like to view these resources too

Cellulitis – Clinical Image and Ultrasound

cellulitis

Case Presentation

A 45-years-old male with a week history of right leg swelling and redness presented to the ED. He has type II DM and hypertension. He denies fever; however, complaints about burning pain over the skin. Vitals were 156/98 mmHg blood pressure, 98 beats per minute heart rate, 16 respiration per minute, 36.7 degrees Celsius temperature and 98% oxygen saturation in room air. Physical exam revealed erythema over the right medial lower leg and calf area (images). Minimally painful with palpation. The area was hot compared to the left leg. Other examination findings were unremarkable.

Cellulitis 2

Cellulitis 1

Patients with red, swollen, painful leg may have very severe problems such as necrotizing fasciitis (infection involving muscular fascia) or infections involving muscles with or without gangrene. The patients having these infections are generally ill-looking, severely painful, and may have subcutaneous crepitations. Therefore, we should be aware of these red flags. This patient has no sign of crepitations, systemic illness, or severe pain.

Lipodermatosclerosis is chronic erythema. Patients show exacerbations because of vascular insufficiency (venous). It can be bilateral or unilateral. One of the discriminative findings from cellulitis is temperature over the lesion. Lipodermatosclerosis is not hot. In the case, the palpation showed warm skin compared to the left side.

Erysipelas is superficial and its’ borders are very sharp. The lesion is fluffy compared to the skin around the lesion. In the case, some areas of the skin were found a little bit raised compared to surrounding structures. However, its’ borders were not well-demarcated.

Other differentials are burns, contact dermatitis, urticaria, etc.

Bedside ultrasound imaging can help to identify cellulitis, abscess, foreign body, fracture, etc. Cobblestone finding is a typical finding for cellulitis.

Bedside ultrasound imaging was performed with Butterfly iQ with soft tissue settings. Cobblestone finding was found in the erythematous areas. This is a nonspecific finding and can be seen many different soft tissue infections. There were no gas/air artifacts (necrotizing fasciitis) or obvious abscess formation. However, there was a minimal fluid accumulation, which creates a suspicion of an abscess. In the case, there was no air artifact. However, x-rays can also help to show air accumulation in soft tissues.

An Example for Necrotizing Fasciitis

The ultrasound investigation in this video shows the air (white) artifacts in the soft tissue.

X-ray Image Showing Subcutaneous Air in Necrotizing Fasciitis

Case courtesy of Dr Matt Skalski, Radiopaedia.org. From the case rID: 25026

For mild uncomplicated patients – dicloxacillin, amoxicillin, and cephalexin are common choices.

If the patient has a penicillin allergy – clindamycin or a macrolide (clarithromycin or azithromycin) can be used.

Fluoroquinolones should be reserved for gram-negative organisms’ sensitivity defined by culture results because of their additional toxicity risks.

For more antibiotic options and explanations, please visit – here

The patients with co-morbidities compromising immune response, periorbital or perianal locations, unable to tolerate oral medication, deep infections should be admitted.

References and Further Reading

  • Loyer EM, DuBrow RA, David CL, Coan JD, Eftekhari F. Imaging of superficial soft-tissue infections: sonographic findings in cases of cellulitis and abscess. AJR Am J Roentgenol. 1996 Jan;166(1):149-52. PubMed PMID: 8571865.
  • Shyy W, Knight RS, Goldstein R, Isaacs ED, Teismann NA. Sonographic Findings in Necrotizing Fasciitis: Two Ends of the Spectrum. J Ultrasound Med. 2016 Oct;35(10):2273-7. doi: 10.7863/ultra.15.12068. Epub 2016 Aug 31. PubMed PMID: 27582527.
Cite this article as: Arif Alper Cevik, "Cellulitis – Clinical Image and Ultrasound," in International Emergency Medicine Education Project, December 2, 2019, https://iem-student.org/2019/12/02/cellulitis-clinical-image-and-ultrasound/, date accessed: September 25, 2021

Hepatobiliary US Imaging – Illustrations

hepatobiliary ultrasound

Anatomy Of The Hepatobiliary System

Anatomy of the hepatobiliary system

Indications

Indications for clinicians to perform point-of-care hepatobiliary ultrasound include the evaluation of; abdominal pain, jaundice, sepsis and ascites.

Transducer

The most commonly used positions include; left lateral decubitus and supine position. A low-to medium-frequency (2–5 MHz) curvilinear ultrasound transducer will suffice for most ultrasound examinations of the gallbladder.

curvilinear transducer

Patient positioning

Patient positioning plays a vital role in the hepatobiliary ultrasound examination. Transducer position according to gallbladder; longitudinal and transverse.

Focus Points on Hepatobilary Ultrasound

focus points hepatobilary ultrasound

Patient Position and Transducer Position

Patient Position and Transducer Position​
Patient Position and Transducer Position​

Normal Hepatobiliary Ultrasound Findings

Normal Hepatobiliary Ultrasound Findings​

Pathological Hepatobiliary Ultrasound Findings

Pathological Hepatobiliary Ultrasound Findings
Pathological Hepatobiliary Ultrasound Findings
Pathological Hepatobiliary Ultrasound Findings
Pathological Hepatobiliary Ultrasound Findings
Cite this article as: Murat Yazici, Turkey, "Hepatobiliary US Imaging – Illustrations," in International Emergency Medicine Education Project, November 27, 2019, https://iem-student.org/2019/11/27/hepatobiliary-us-imaging-illustrations/, date accessed: September 25, 2021

Massive Pneumothorax Without A Tension

massive pneumothorax

Case Presentation

A 24-years-old male with shortness of breath and chest pain presented to the emergency department. He was alert and oriented. Vitals were as follows; BP: 127/65 mmHg, HR: 101 beats per min, RR: 24 breaths per min, T: 37-degree celsius, SatO2: 94%. Physical examination revealed that normal breathing sounds on the left side, but decreased breath sounds on the right side of the chest. No JVD noted. Other examination findings were unremarkable.

Shortness of breath and chest pain started suddenly while he was playing soccer about 30 minutes ago. Since then, shortness of breath and chest pain increased. He has no known medical disease, allergy.

Bedside ultrasound revealed pneumothorax on the right.

Bedside Ultrasound Examination

Above video shows left side B mode ultrasound examination. Investigation was done in lung settings by using Butterfly iQ portable ultrasound. Lung sliding and comet tail artefacts are seen on examination which is normal findings.

Above video shows right side B mode and M-mode ultrasound examination. There is no lung sliding or comet tail artefacts in B mode, and M-mode revealed “barcode sign” which is seen in pneumothorax.

Pneumothorax - US - Lung - M-mode

Image shows “barcode sign” in M-mode examination. 

Bedside Portable Chest X-ray

spontaneous pneumothorax 1 - 18yo male

Bedside portable anteroposterior chest x-ray shows right sided large pneumothorax.

Cite this article as: Arif Alper Cevik, "Massive Pneumothorax Without A Tension," in International Emergency Medicine Education Project, November 25, 2019, https://iem-student.org/2019/11/25/massive-pneumothorax-without-a-tension/, date accessed: September 25, 2021

Home Made IV Access Ultrasound Phantoms

home made IV access ultrasound phantom

We recently had the 3rd Tanzanian Conference on Emergency Medicine. Point of Care Ultrasound (PoCUS) training was one of the pre-conference workshops. Ultrasound-guided intravenous cannulation can be very challenging for many doctors in the emergency department.

Therefore, we had a station providing a real-time opportunity to practice IV access using our homemade ultrasound phantoms. And I shall share with you how we came up with this solution.

Ingredients

Ingredients for making the mixture
Ingredients for making the mixture
Food coloring dye
Food coloring dye
Equipment for making vessels
Equipment for making vessels

How to make your mixture

Take a cooking pot and fill it with 1200 mls of water (we used this as our molding device could accommodate this amount of mls) bring it to a boil (just as it begins to form tiny bubbles on the base add gelatin powder 8 tablespoons and stir with a hand mixer until it completely dissolves. Thereby add 2 tablespoons of Metamucil and 1 tablespoon of detergent and continue stirring with low flame until the mixture begins to thicken. At this point, you will also see foam that sits on top of the mix. Use a sieve to get the foam out. You can, at this point, add any colors that you would want. Let the mixture cool a little before pouring it into the container. As it cools, you will notice it becoming thicker.

How to set-up your mold/containers

You will need to make a hole on both ends on the container using a hand drill or a hot pointed knife. For this case, since we didn’t have a drill, we used a knife with a pointed tip – heated it up in a burner until it was hot enough and used it to make holes through the plastic container using a circular motion. It is important for the holes not to be too big but estimated to the caliber/ diameter of the long balloons since we need just enough space to pass the balloons across.

For our case, we made 4 holes, 2 on each end. But you can do more if you want. You can arrange balloons in superficial or deeper locations.

To setup the vessels using the long balloons, you will need half cup of water and red color dye. Mix just enough to make a mixture that looks like blood. This can be filled in the balloons with a syringe. Since the color dye can stain your fingers, it is important to use gloves just to prevent your fingers from staining.

Tip: To make an artery, you can fill the balloon much more so that there is minimal compressibility and for the vein, you can fill just enough and have room for compressibility. Don’t fill the balloons before passing it through the container; if you do this, the filled balloon won’t manage to fit into the holes. Once fixed, tie both ends to make knots that are big enough to cover the seal the holes made.
Before pouring the mixture into the container, spray it with some oil, or you can use a cloth dip it in oil and apply it on the inside of the container.

After that, pour your mixture in the container and let it cool. You can place it in the refrigerator and use it the next day. We left ours for 24 hrs prior use.

You can use silicone seals at the holes if you notice to have any leaks. Otherwise, if you don’t have this, you can use plastic food wrap to create a seal between the balloon knots and the container just so the mixture does not leak out until it has set.

Cooling in the refrigerator, note the plastic food wraps used as seal here and the knots
Cooling in the refrigerator, note the plastic food wraps used as seal here and the knots
6 hours after refrigeration
6 hours after refrigeration
Final product
Final product

And finally, the images that you will have on ultrasound.

Short axis/transvers view
Short axis/transvers view
Long/longitudinal axis view
Long/longitudinal axis view
TACEM - IV access workshop under US guidance
TACEM - IV access workshop under US guidance
Cite this article as: Masuma Ali Gulamhussein, "Home Made IV Access Ultrasound Phantoms," in International Emergency Medicine Education Project, November 18, 2019, https://iem-student.org/2019/11/18/home-made-iv-access-ultrasound-phantoms/, date accessed: September 25, 2021

Basic Transthoracic Echocardiographic Imaging

In the adult transthoracic echocardiographic (TTE) imaging, a standard series of cross-sectional anatomical views are recommended by the American Society of Echocardiography (ASE).

There are two major obstacles for ultrasound beam transmission: 1) bony chest wall, 2) air-filled lungs. Specific ultrasound transducer positions on the chest wall are required in order to perform optimal examination.

Four primary transducer positions or “windows” are recommended. For patients with normal levocardia, the examination begins at (1) the left parasternal window, followed by the apical window, (3) the subcostal or subxiphoid window, and (4) the suprasternal notch window

A4C(Apical Four Chamber), A5C(Apical Five Chamber), A2C(Apical Tho Chmaber), A3C(Apical Three Chamber)

In this blog post, I will try to explain the “windows” of the echocardiographic imaging through drawings

LA(Left Atrium), LV(Left Ventricle), LVOT(Left Ventricular Outflow Tract), Ao(Aorta), RV(Right Ventricle), MV(Mitral valve), AoV(Aortic valve)
LV(Left Ventricle), RV(Right Ventricle)
LA(Left Atrium), RA(Right Atrium), RV(Rigt Ventricle), RVOT(Right Ventricular Outflow Tract), AoV(Aortic Valve), TV(Tricuspid Valve), PV(Pulmonary Valve)
LA(Left Atrium), RA(Right Atrium), RV(Right Ventricle), LV(Left Ventricle), LVOT(Left Ventricular Outflow Tract), TV(Tricuspid Valve), MV(Mitral Valve), AoV(Aortic Valve)
LA(Left Atrium), RA(Right Atrium), RV(Right Ventricle), LV(Left Ventricle), LVOT(Left Ventricular Outflow Tract), TV(Tricuspid Valve), MV(Mitral Valve), AoV(Aortic Valve)
LA(Left Atrium), LV(Left Ventricle), MV(Mitral Valve)
LA(Left Atrium), LV(Left Ventricle), Ao(Aorta), MV(Mitral Valve), AoV(Aortic Valve)
LA(Left Atrium), RA(Right Atrium), LV(Left Ventricle), RV(Right Ventricle), MV(Mitral Valve), TV(Tricuspid Valve)
LA(Left Atrium), BCA(Brachiocephalic Artery), LCA(Left Common Carotid Artery), LSC(Left Subclavian Artery), RPA(Right Pulmonary Artery)
Cite this article as: Murat Yazici, Turkey, "Basic Transthoracic Echocardiographic Imaging," in International Emergency Medicine Education Project, June 12, 2019, https://iem-student.org/2019/06/12/basic-transthoracic-echocardiographic-imaging/, date accessed: September 25, 2021

Bat Sign

Dear students/interns, learn ultrasonographic anatomy and clinical ultrasound basics to improve your decision making processes.

bat2

The bat sign is critical for correct identification of the pleural line. Always begin lung ultrasound by identifying the bat sign before proceeding to look for artifacts and pathologies.

This sign is formed when scanning across 2 ribs with the intervening intercostal space.

The wings are formed by the 2 ribs, casting an acoustic shadow. The body is the first continuous horizontal hyperechoic line that starts below one rib and extends all the way to the other. (see above video) The body is the pleural line, i.e., parietal pleural. Normally, the pleural line is opposed to and hence indistinguishable from the lung line (formed by the visceral pleura).

To learn more about it, read chapter below.

Read "Blue Protocol" Chapter

Medical students’ ultrasound training – SURVEY

There are many studies showing benefits of ultrasound training about understanding anatomy, pathologies and improving clinical decision making. Countries show different approaches to implementing ultrasound training at the medical school level. There are many obstacles such as staff, equipment, training manikins, dedicated time in curriculum design. International organizations are trying to find solutions for these obstacles and encouraging to implement ultrasound training into the medical school curriculum. Ultrasound can be a valuable diagnostic and procedural tool in many low resourced countries, especially where the CT scans and x-rays are not available. However, even in developed countries, medical students’ training on ultrasonography skills is still an infancy period.

We conducted a 1-minute survey to explore the global situation in order to understand current applications in medical schools. We hope you fill and share this survey with your professional contacts and students.

1 minute SURVEY