Emergency Medicine Perspectives of Students – North America

Dear EM family,

The International Emergency Medicine Education Project (iem-student.org) has completed three years. As you may know, the iEM Education project aims to promote Emergency Medicine and provides copyright-free resources to students and educators around the world. Now we have reached more than 200 countries. We would like to thank again our contributors. Without them, such a project would not be possible. This experience has shown us once again how passionate our international EM community is to help and teach each other.

In May 2021, we started the fourth year of this journey. To celebrate, we are pleased to announce alive activity series, Emergency Medicine Perspectives of Students Around the World. Our guests for the third session are Kayla M. Ferguson, Brenda M. Varriano, and Dr. Halley J. Alberts.

Together, we can understand the experiences and needs of medical students from different backgrounds and discuss potential solutions.

Here are the video and audio records of this session. 

Cite this article as: Arif Alper Cevik, "Emergency Medicine Perspectives of Students – North America," in International Emergency Medicine Education Project, May 23, 2022, https://iem-student.org/2022/05/23/emergency-medicine-perspectives-of-students-north-america/, date accessed: May 25, 2022

Question Of The Day #89

question of the day

Which of the following is the most appropriate next step in management?

Shortness of breath, also known as dyspnea, is a common reason for patients to visit the Emergency Department.  Dyspnea is often caused by a pulmonary or cardiovascular condition, but it is important to remember that dyspnea can be due to endocrine conditions, toxicologic conditions, neurologic conditions, hematologic conditions, musculoskeletal conditions, and psychiatric conditions. 

The initial approach to all patients with shortness of breath involves the primary survey, or “ABCs” (Airway, Breathing, Circulation).  This first involves checking the patient for a patent airway.  A simple method to assess the airway is to ask the patient to speak and listen for the voice.  A muffled voice, the presence of stridor, hematemesis, or a lethargic patient are clues that a patent airway may not be present.  Problems with the airway, such as an obstructing foreign body, inflammation (i.e., epiglottitis, anaphylactic shock), or vocal cord dysfunction can certainly cause shortness of breath.  Endotracheal intubation may need to be performed before moving forward.  Breathing is assessed by evaluating the function of the lungs.  Steps include looking at how the patient is breathing (fast or slow), measurement of an SpO2 level, and auscultation of both lungs for wheezing, crackles, rhonchi, or distant or absent sounds.  A low oxygen level should be immediately addressed with supplemental oxygen before moving forward.  The patient’s breathing rate and lung sounds can be very helpful in discovering the diagnosis and guiding treatment.  Lastly, circulation should be assessed.  Check the heart rate, blood pressure, peripheral pulses, skin color and temperature, and evaluate for any sites of hemorrhage.  The presence of hypotension or tachycardia should be addressed appropriately based on the presumed cause.  After the primary assessment (“ABCs”) and initial treatment actions, a more detailed history and physical exam should be conducted. 

Pertinent causes of shortness of breath for the emergency practitioner to know are outlined in the chart below. 

 

Select Causes of Shortness of Breath (Dyspnea)

Pulmonary

 

Tension pneumothorax, pneumonia, empyema, pleural effusion, pulmonary edema, asthma, COPD

Cardiovascular

 

Acute coronary syndrome (i.e., STEMI), pulmonary embolism, cardiac tamponade, Decompensated Congestive Heart Failure (acute pulmonary edema)

Endocrine

 

Diabetic ketoacidosis (Kussmaul breathing)

Toxicologic

 

Salicylate overdose, or any ingestion that causes a severe metabolic acidosis

Neurologic

 

Intracranial hemorrhage, Stroke, Spinal cord injury, Guillain-Barre syndrome, Myasthenia Gravis crisis (myasthenic crisis)

Hematologic

 

Severe anemia (i.e., GI bleeding, trauma, miscarriage, post-partum hemorrhage, ruptured ectopic pregnancy)

Musculoskeletal

 

Rib fracture, flail chest

Psychiatric

 

Anxiety, Panic attack

Airway Problem

Foreign body, epiglottitis, anaphylactic shock (laryngeal swelling), expanding neck hematoma

This patient arrives to the Emergency department with acute shortness of breath, an urticarial rash, hypotension, tachycardia, swelling of the lips and tongue, and wheezing on lung exam.  This patient is in anaphylactic shock and requires prompt treatment with epinephrine.  Anaphylaxis is an IgE-mediated life-threatening allergic reaction that by definition affects two or more body systems (i.e., skin/mucosa, pulmonary, cardiovascular, gastrointestinal, etc.).  This patient has involvement of the skin (urticarial rash, mucosal swelling), cardiovascular system (hypotension and tachycardia), and pulmonary system (wheezing).  Symptoms of anaphylaxis may include urticaria, shortness of breath, wheezing, facial or airway swelling, vomiting or diarrhea, and abdominal pain.  Anaphylaxis is a clinical diagnosis and does not require vital signs to be unstable in order to be diagnosed.  Once diagnosed, the most time sensitive and lifesaving treatment is epinephrine.  The recommended initial dose for epinephrine is 0.3-0.5mg intramuscularly in the thigh for adults.  Epinephrine doses can be repeated every 5-15 minutes if there is no improvement after the initial dose. Antihistamines, like Diphenhydramine (Choice D) or famotidine may be helpful as adjunctive treatments, but they are not lifesaving.  Steroids, like Dexamethasone (Choice C), are also routinely given in anaphylaxis with the theory that they can prevent “rebound” allergic reactions.  Again, steroids are not acutely lifesaving and should be given after IM epinephrine.  IV epinephrine can be given in a patient unresponsive to IM epinephrine at a dose of 1-5mcg/min.  A dose of IV Epinephrine 1mg (1000mcg) (Choice A) is the dose of Epinephrine used during cardiac arrest and is too high of a dose to use in anaphylaxis.  The best initial step in management is IM Epinephrine 0.3mg (Choice B).  

References

Cite this article as: iEM Education Project Team, "Question Of The Day #89," in International Emergency Medicine Education Project, May 20, 2022, https://iem-student.org/2022/05/20/question-of-the-day-89/, date accessed: May 25, 2022

Emergency Medicine Perspectives of Students – Central and South America

Dear EM family,

The International Emergency Medicine Education Project (iem-student.org) has completed three years. As you may know, the iEM Education project aims to promote Emergency Medicine and provides copyright-free resources to students and educators around the world. Now we have reached more than 200 countries. We would like to thank again our contributors. Without them, such a project would not be possible. This experience has shown us once again how passionate our international EM community is to help and teach each other.

In May 2021, we started the fourth year of this journey. To celebrate, we are pleased to announce alive activity series, Emergency Medicine Perspectives of Students Around the World. Our guests for the third session are Henrique Herpich from Brazil, Genesis Soto Chaves from Costa Rica, and William Gopar Franco from Mexico..

Together, we can understand the experiences and needs of medical students from different backgrounds and discuss potential solutions.

Here are the video and audio records of this session. 

Cite this article as: Arif Alper Cevik, "Emergency Medicine Perspectives of Students – Central and South America," in International Emergency Medicine Education Project, May 16, 2022, https://iem-student.org/2022/05/16/emergency-medicine-perspectives-of-students-central-and-south-america/, date accessed: May 25, 2022

Question Of The Day #88

question of the day
Which of the following is the most appropriate next step in management?

Shortness of breath, also known as dyspnea, is a common reason for patients to visit the Emergency Department.  Dyspnea is often caused by a pulmonary or cardiovascular condition, but it is important to remember that dyspnea can be due to endocrine conditions, toxicologic conditions, neurologic conditions, hematologic conditions, musculoskeletal conditions, and psychiatric conditions. 

The initial approach to all patients with shortness of breath involves the primary survey, or “ABCs” (Airway, Breathing, Circulation).  This first involves checking the patient for a patent airway.  A simple method to assess the airway is to ask the patient to speak and listen for the voice.  A muffled voice, the presence of stridor, hematemesis, or a lethargic patient are clues that a patent airway may not be present.  Problems with the airway, such as an obstructing foreign body, inflammation (i.e., epiglottitis, anaphylactic shock), or vocal cord dysfunction can certainly cause shortness of breath.  Endotracheal intubation may need to be performed before moving forward.  Breathing is assessed by evaluating the function of the lungs.  Steps include looking at how the patient is breathing (fast or slow), measurement of an SpO2 level, and auscultation of both lungs for wheezing, crackles, rhonchi, or distant or absent sounds.  A low oxygen level should be immediately addressed with supplemental oxygen before moving forward.  The patient’s breathing rate and lung sounds can be very helpful in discovering the diagnosis and guiding treatment.  Lastly, circulation should be assessed.  Check the heart rate, blood pressure, peripheral pulses, skin color and temperature, and evaluate for any sites of hemorrhage.  The presence of hypotension or tachycardia should be addressed appropriately based on the presumed cause.  After the primary assessment (“ABCs”) and initial treatment actions, a more detailed history and physical exam should be conducted. 

Pertinent causes of shortness of breath for the emergency practitioner to know are outlined in the chart below. 

 

Select Causes of Shortness of Breath (Dyspnea)

Pulmonary

 

Tension pneumothorax, pneumonia, empyema, pleural effusion, pulmonary edema, asthma, COPD

Cardiovascular

 

Acute coronary syndrome (i.e., STEMI), pulmonary embolism, cardiac tamponade, Decompensated Congestive Heart Failure (acute pulmonary edema)

Endocrine

 

Diabetic ketoacidosis (Kussmaul breathing)

Toxicologic

 

Salicylate overdose, or any ingestion that causes a severe metabolic acidosis

Neurologic

 

Intracranial hemorrhage, Stroke, Spinal cord injury, Guillain-Barre syndrome, Myasthenia Gravis crisis (myasthenic crisis)

Hematologic

 

Severe anemia (i.e., GI bleeding, trauma, miscarriage, post-partum hemorrhage, ruptured ectopic pregnancy)

Musculoskeletal

 

Rib fracture, flail chest

Psychiatric

 

Anxiety, Panic attack

Airway Problem

Foreign body, epiglottitis, anaphylactic shock (laryngeal swelling), expanding neck hematoma

This patient arrives to the Emergency department with shortness of breath and abdominal discomfort for 1 day.  On exam, she is hypotensive, tachycardic, and tachypneic.  Her lungs are clear, the abdomen is tender and distended, and the pregnancy test is positive.  This patient has a ruptured ectopic pregnancy until proven otherwise and requires prompt surgical management.  Once diagnosed by the Emergency clinician, ectopic pregnancy can be managed medically or surgically.  See the chart below for more details.

Treatment options for ectopic pregnancy

 

Medical Management (Methotrexate) Indicated:

Surgical Management

Indicated:

Patient hemodynamically stable

Patient hemodynamically unstable

HCG <5,000

HCG >5,000

Able to comply with Methotrexate treatment and follow up

Unable to comply with Methotrexate treatment and/or follow up

No fetal cardiac activity on ultrasound

Fetal cardiac activity present on ultrasound

   

This patient has an assumed ectopic pregnancy due to the positive pregnancy test and presence of hemodynamic instability.  A transvaginal ultrasound (Choice C) would help definitively diagnose the patient with a ruptured ectopic pregnancy, but this should not delay consultation with the OBGYN team for definitive surgical management.  Methotrexate (Choice A) is a medical treatment for ectopic pregnancy, but Methotrexate is contraindicated in ruptured ectopic due to the need for surgical treatment and intra-abdominal hemorrhage control.  IV antibiotics (Choice B) are often given preoperatively for infection prophylaxis (prevention), but this is not a crucial next step.  This patient is in shock and needs operative management. The best next step is OBGYN consultation for operative management (Choice D).

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #88," in International Emergency Medicine Education Project, May 13, 2022, https://iem-student.org/2022/05/13/question-of-the-day-88/, date accessed: May 25, 2022

Emergency Medicine Perspectives of Students – Asia

Dear EM family,

The International Emergency Medicine Education Project (iem-student.org) has completed three years. As you may know, the iEM Education project aims to promote Emergency Medicine and provides copyright-free resources to students and educators around the world. Now we have reached more than 200 countries. We would like to thank again our contributors. Without them, such a project would not be possible. This experience has shown us once again how passionate our international EM community is to help and teach each other.

In May 2021, we started the fourth year of this journey. To celebrate, we are pleased to announce alive activity series, Emergency Medicine Perspectives of Students Around the World. Our guests for the third session are Nanditha S. Vinod from India, Kezban Sila Kunt from Turkey, and Nanette B. Doroja from Phillipines.

Together, we can understand the experiences and needs of medical students from different backgrounds and discuss potential solutions.

Here are the video and audio records of this session. 

Part 1

Part 2

Cite this article as: Arif Alper Cevik, "Emergency Medicine Perspectives of Students – Asia," in International Emergency Medicine Education Project, May 9, 2022, https://iem-student.org/2022/05/09/emergency-medicine-perspectives-of-students-asia/, date accessed: May 25, 2022

Question Of The Day #87

question of the day

 

Test Value

Reference Range

BUN

14

6 – 24 mg/dL

Creatinine

0.87

0.59 – 1.04 mg/dL

Hemoglobin

5.5

12.0 – 15.0 g/dL

WBC count

5.2

4.5 to 11.0 × 109/L

HCG quantitative

0

<5 mIU/mL

Which of the following is the most like cause for this patient’s condition?

Shortness of breath, also known as dyspnea, is a common reason for patients to visit the Emergency Department.  Dyspnea is often caused by a pulmonary or cardiovascular condition, but it is important to remember that dyspnea can be due to endocrine conditions, toxicologic conditions, neurologic conditions, hematologic conditions, musculoskeletal conditions, and psychiatric conditions. 

The initial approach to all patients with shortness of breath involves the primary survey, or “ABCs” (Airway, Breathing, Circulation).  This first involves checking the patient for a patent airway.  A simple method to assess the airway is to ask the patient to speak and listen for the voice.  A muffled voice, the presence of stridor, hematemesis, or a lethargic patient are clues that a patent airway may not be present.  Problems with the airway, such as an obstructing foreign body, inflammation (i.e., epiglottitis, anaphylactic shock), or vocal cord dysfunction can certainly cause shortness of breath.  Endotracheal intubation may need to be performed before moving forward.  Breathing is assessed by evaluating the function of the lungs.  Steps include looking at how the patient is breathing (fast or slow), measurement of an SpO2 level, and auscultation of both lungs for wheezing, crackles, rhonchi, or distant or absent sounds.  A low oxygen level should be immediately addressed with supplemental oxygen before moving forward.  The patient’s breathing rate and lung sounds can be very helpful in discovering the diagnosis and guiding treatment.  Lastly, circulation should be assessed.  Check the heart rate, blood pressure, peripheral pulses, skin color and temperature, and evaluate for any sites of hemorrhage.  The presence of hypotension or tachycardia should be addressed appropriately based on the presumed cause.  After the primary assessment (“ABCs”) and initial treatment actions, a more detailed history and physical exam should be conducted. 

Pertinent causes of shortness of breath for the emergency practitioner to know are outlined in the chart below. 

 

Select Causes of Shortness of Breath (Dyspnea)

Pulmonary

 

Tension pneumothorax, pneumonia, empyema, pleural effusion, pulmonary edema, asthma, COPD

Cardiovascular

 

Acute coronary syndrome (i.e., STEMI), pulmonary embolism, cardiac tamponade, Decompensated Congestive Heart Failure (acute pulmonary edema)

Endocrine

 

Diabetic ketoacidosis (Kussmaul breathing)

Toxicologic

 

Salicylate overdose, or any ingestion that causes a severe metabolic acidosis

Neurologic

 

Intracranial hemorrhage, Stroke, Spinal cord injury, Guillain-Barre syndrome, Myasthenia Gravis crisis (myasthenic crisis)

Hematologic

 

Severe anemia (i.e., GI bleeding, trauma, miscarriage, post-partum hemorrhage, ruptured ectopic pregnancy)

Musculoskeletal

 

Rib fracture, flail chest

Psychiatric

 

Anxiety, Panic attack

Airway Problem

Foreign body, epiglottitis, anaphylactic shock (laryngeal swelling), expanding neck hematoma

This patient arrives to the Emergency department with shortness of breath with deceased exercise tolerance or 5 days.  Her vital signs are normal and lungs are clear, but she appears pale.  The laboratory test provided shows normal kidney function, a negative serum pregnancy test, and a markedly low hemoglobin level.  A ruptured ectopic pregnancy (Choice B) can cause shortness of breath due to anemia and hemorrhagic shock, but this patient has a negative pregnancy test.  Asthma (Choice A) is unlikely given the patient’s normal lung exam without wheezing and no mention of cough.  A pulmonary embolism (Choice D) is possible due to the tachycardia, but the patient lacks other risk factors as stated in the question stem.  A D-Dimer test could help further evaluate if this patient has a pulmonary embolism, but the low hemoglobin likely explains the patient’s symptoms.  The patient’s history of menorrhagia, also known as heavy menses (Choice C), is a common cause of anemia in women of childbearing age.  Even though this patient is not currently menstruating, her heavy menses are the most likely cause for her shortness of breath.  Choice C is the best answer.

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #87," in International Emergency Medicine Education Project, May 6, 2022, https://iem-student.org/2022/05/06/question-of-the-day-87/, date accessed: May 25, 2022

Question Of The Day #86

question of the day
420 - right pneumothorax1
Which of the following is the most appropriate next step in management for this patient’s condition?

Shortness of breath, also known as dyspnea, is a common reason for patients to visit the Emergency Department.  Dyspnea is often caused by a pulmonary or cardiovascular condition, but it is important to remember that dyspnea can be due to endocrine conditions, toxicologic conditions, neurologic conditions, hematologic conditions, musculoskeletal conditions, and psychiatric conditions. 

The initial approach to all patients with shortness of breath involves the primary survey, or “ABCs” (Airway, Breathing, Circulation).  This first involves checking the patient for a patent airway.  A simple method to assess the airway is to ask the patient to speak and listen for the voice.  A muffled voice, the presence of stridor, hematemesis, or a lethargic patient are clues that a patent airway may not be present.  Problems with the airway, such as an obstructing foreign body, inflammation (i.e., epiglottitis, anaphylactic shock), or vocal cord dysfunction can certainly cause shortness of breath.  Endotracheal intubation may need to be performed before moving forward.  Breathing is assessed by evaluating the function of the lungs.  Steps include looking at how the patient is breathing (fast or slow), measurement of an SpO2 level, and auscultation of both lungs for wheezing, crackles, rhonchi, or distant or absent sounds.  A low oxygen level should be immediately addressed with supplemental oxygen before moving forward.  The patient’s breathing rate and lung sounds can be very helpful in discovering the diagnosis and guiding treatment.  Lastly, circulation should be assessed.  Check the heart rate, blood pressure, peripheral pulses, skin color and temperature, and evaluate for any sites of hemorrhage.  The presence of hypotension or tachycardia should be addressed appropriately based on the presumed cause.  After the primary assessment (“ABCs”) and initial treatment actions, a more detailed history and physical exam should be conducted. 

Pertinent causes of shortness of breath for the emergency practitioner to know are outlined in the chart below. 

 

Select Causes of Shortness of Breath (Dyspnea)

Pulmonary

 

Tension pneumothorax, pneumonia, empyema, pleural effusion, pulmonary edema, asthma, COPD

Cardiovascular

 

Acute coronary syndrome (i.e., STEMI), pulmonary embolism, cardiac tamponade, Decompensated Congestive Heart Failure (acute pulmonary edema)

Endocrine

 

Diabetic ketoacidosis (Kussmaul breathing)

Toxicologic

 

Salicylate overdose, or any ingestion that causes a severe metabolic acidosis

Neurologic

 

Intracranial hemorrhage, Stroke, Spinal cord injury, Guillain-Barre syndrome, Myasthenia Gravis crisis (myasthenic crisis)

Hematologic

 

Severe anemia (i.e., GI bleeding, trauma, miscarriage, post-partum hemorrhage, ruptured ectopic pregnancy)

Musculoskeletal

 

Rib fracture, flail chest

Psychiatric

 

Anxiety, Panic attack

Airway Problem

Foreign body, epiglottitis, anaphylactic shock (laryngeal swelling), expanding neck hematoma

This patient arrives to the Emergency department with acute onset shortness of breath with pleuritic right sided chest pain.  On exam, there is mild tachypnea and a borderline low SpO2 of 95% on room air.  The chest X-ray demonstrates a small right sided pneumothorax (see location of red stars below).

Needle decompression to the right chest (Choice C) would be the right choice if the patient had a right sided tension pneumothorax.  Signs of a tension pneumothorax are hypotension, tachycardia, tracheal deviation, and mediastinal shift on Chest X-ray.  Tension pneumothorax should be diagnosed clinically without a chest X-ray and promptly treated with needle decompression with a 14-16 gauge needle at the 2nd intercostal space in the mid clavicular line.  Needle decompression can also be performed at the 4th or 5th intercostal space in the anterior axillary line. Needle decompression is always followed by placement of a formal chest tube.  This patient does not have the hemodynamic instability or chest X-ray findings of a classic tension pneumothorax. IV Azithromycin (Choice D) would be appropriate for a COPD exacerbation or for community-acquired pneumonia.  This patient does have a cough, but lacks fever, sputum production, and also has a pneumothorax on X-ray that can explain his symptoms.  An IV Heparin bolus and infusion (Choice A) would be the ideal treatment for a pulmonary embolism or acute coronary syndrome.  Again, the Chest X-ray provided shows support for an alternative cause for the patient’s symptoms.  The best next step is supplemental oxygen (Choice B).  100% supplemental oxygen helps decrease the time to lung expansion in patients with pneumothoraces.   A nonrebreather mask at 15L/min is the ideal method to providing this level of oxygen.

This patient has a small pneumothorax (<3cm between lung margin and chest wall).  Small primary pneumothoraces have two treatment options.  The first option is to administer 100% oxygen and place a pigtail catheter for rapid lung re-expansion.  The second option is to only administer 100% oxygen administration for a period of 4-6 hours followed by a repeat chest X-ray to evaluate for improvement of the pneumothorax.   If the pneumothorax is improving and symptoms are improving (less shortness of breath and chest pain), the patient can be discharged home with close outpatient follow up and no chest tube placement.  Deciding which treatment option is best should depend on the patient’s ability to follow up with a doctor, patient reliability, and resource availability.  This patient does have a small pneumothorax by measurement, but he likely has a secondary pneumothorax from his COPD.  Secondary pneumothoraces have a higher rate of recurrence and almost always require chest tube placement.  Regardless, the best initial step in treatment is supplemental oxygen (Choice B).

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #86," in International Emergency Medicine Education Project, April 29, 2022, https://iem-student.org/2022/04/29/question-of-the-day-86/, date accessed: May 25, 2022

Emergency Procedures: Intraosseus Needle Insertion

emergency procedures-Intraosseus Insertion

Indications

  • Emergency intravenous access is required and Peripheral intravenous access is difficult or has failed.

This video has been provided by Emergency Procedures App developers (Dr John Mackenzie and Dr James Miers) in order to help medical students, interns in training. Please visit the video source or Emergency Procedures app for more procedure videos and information. 

Contributors

Dr John Mackenzie

Dr John Mackenzie

Dr John Mackenzie MBChB , Dip MSM, FACEM . Staff Specialist Emergency Medicine, Consultant Hyperbaric Medicine Specialist, at Prince of Wales Hospital. Known for cycling endlessly for no apparent reason. 20 years of developing virtual learning for clinicians at all levels.

Dr James Miers

Dr James Miers

Dr James Miers BSc BMBS (Hons) FACEM, Staff Specialist in Emergency Medicine, Prince of Wales Hospital, Sydney. Passion for gypsy jazz and chess. Lead author of Lead author of Emergency Procedures App.

Further Reading

Question Of The Day #85

question of the day
SS Video 3  Pericardial Tamponade
Which of the following is the most likely cause for this patient’s condition?

Shortness of breath, also known as dyspnea, is a common reason for patients to visit the Emergency Department.  Dyspnea is often caused by a pulmonary or cardiovascular condition, but it is important to remember that dyspnea can be due to endocrine conditions, toxicologic conditions, neurologic conditions, hematologic conditions, musculoskeletal conditions, and psychiatric conditions. 

The initial approach to all patients with shortness of breath involves the primary survey, or “ABCs” (Airway, Breathing, Circulation).  This first involves checking the patient for a patent airway.  A simple method to assess the airway is to ask the patient to speak and listen for the voice.  A muffled voice, the presence of stridor, hematemesis, or a lethargic patient are clues that a patent airway may not be present.  Problems with the airway, such as an obstructing foreign body, inflammation (i.e., epiglottitis, anaphylactic shock), or vocal cord dysfunction can certainly cause shortness of breath.  Endotracheal intubation may need to be performed before moving forward.  Breathing is assessed by evaluating the function of the lungs.  Steps include looking at how the patient is breathing (fast or slow), measurement of an SpO2 level, and auscultation of both lungs for wheezing, crackles, rhonchi, or distant or absent sounds.  A low oxygen level should be immediately addressed with supplemental oxygen before moving forward.  The patient’s breathing rate and lung sounds can be very helpful in discovering the diagnosis and guiding treatment.  Lastly, circulation should be assessed.  Check the heart rate, blood pressure, peripheral pulses, skin color and temperature, and evaluate for any sites of hemorrhage.  The presence of hypotension or tachycardia should be addressed appropriately based on the presumed cause.  After the primary assessment (“ABCs”) and initial treatment actions, a more detailed history and physical exam should be conducted. 

Pertinent causes of shortness of breath for the emergency practitioner to know are outlined in the chart below. 

 

Select Causes of Shortness of Breath (Dyspnea)

Pulmonary

 

Tension pneumothorax, pneumonia, empyema, pleural effusion, pulmonary edema, asthma, COPD

Cardiovascular

 

Acute coronary syndrome (i.e., STEMI), pulmonary embolism, cardiac tamponade, Decompensated Congestive Heart Failure (acute pulmonary edema)

Endocrine

 

Diabetic ketoacidosis (Kussmaul breathing)

Toxicologic

 

Salicylate overdose, or any ingestion that causes a severe metabolic acidosis

Neurologic

 

Intracranial hemorrhage, Stroke, Spinal cord injury, Guillain-Barre syndrome, Myasthenia Gravis crisis (myasthenic crisis)

Hematologic

 

Severe anemia (i.e., GI bleeding, trauma, miscarriage, post-partum hemorrhage, ruptured ectopic pregnancy)

Musculoskeletal

 

Rib fracture, flail chest

Psychiatric

 

Anxiety, Panic attack

Airway Problem

Foreign body, epiglottitis, anaphylactic shock (laryngeal swelling), expanding neck hematoma

This patient presented to the Emergency department with 2 days of shortness of breath without chest pain, cough, or fevers.  The exam shows tachycardia, hypotension, mild tachypnea, clear lungs, and distant heart sounds.  Tension pneumothorax (Choice B) can cause hypotension and tachycardia and COPD is a risk factor for pulmonary bleb formation and rupture.  However, the lungs are equal and clear bilaterally, so this diagnosis is not likely.  Septic shock due to pneumonia (Choice C) is also less likely as there is no fever, the lungs are clear, and the patient lacks a cough.  The ultrasound image given also provides a clear explanation for the patient’s symptoms.  This patient is at risk for pulmonary embolism (Choice A) given his cancer history which can cause a hypercoagulable state and predispose him to clot formation.  Again, an understanding of the ultrasound image will provide the diagnosis.

The ultrasound image is a subxiphoid view of the heart demonstrating a pericardial effusion (red stars) with compression of the right ventricle (yellow arrow). 

This presentation is consistent with cardiac tamponade (Choice D).  Cardiac tamponade is a condition defined by the accumulation of fluid in the pericardial sac to the point of right ventricular collapse and obstructive shock.  Common presenting symptoms of cardiac tamponade include shortness of breath, chest pain, or nonspecific symptoms.  Risk factors for this diagnosis are penetrating chest trauma (hemopericardium), cancer (malignant effusion), lupus, end stage renal disease, uremia, HIV, Tuberculosis, or history of chest radiation.  The presence of hemodynamic instability (hypotension and tachycardia) is a hallmark of this condition, although early stages of tamponade can be seen on cardiac ultrasound before vital signs decompensate.  The patient may have Beck’s triad of muffled distant heart sounds, jugular venous distension, and hypotension, although the majority of patients with cardiac tamponade do not have all three of these signs together.  Treatment involves IV fluids, bedside pericardiocentesis (ultrasound guided preferred), and surgical pericardiotomy (“pericardial window”).

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #85," in International Emergency Medicine Education Project, April 22, 2022, https://iem-student.org/2022/04/22/question-of-the-day-85/, date accessed: May 25, 2022

Emergency Procedures: Patella Relocation

emergency procedures-patella relocation

Indications

  • Patella dislocation

This video has been provided by Emergency Procedures App developers (Dr John Mackenzie and Dr James Miers) in order to help medical students, interns in training. Please visit the video source or Emergency Procedures app for more procedure videos and information. 

Contributors

Dr John Mackenzie

Dr John Mackenzie

Dr John Mackenzie MBChB , Dip MSM, FACEM . Staff Specialist Emergency Medicine, Consultant Hyperbaric Medicine Specialist, at Prince of Wales Hospital. Known for cycling endlessly for no apparent reason. 20 years of developing virtual learning for clinicians at all levels.

Dr James Miers

Dr James Miers

Dr James Miers BSc BMBS (Hons) FACEM, Staff Specialist in Emergency Medicine, Prince of Wales Hospital, Sydney. Passion for gypsy jazz and chess. Lead author of Lead author of Emergency Procedures App.

Further Reading

Question Of The Day #84

question of the day
475.3 xray abdomen series normal chest
Which of the following is the most appropriate next step in management for this patient’s condition?

Shortness of breath, also known as dyspnea, is a common reason for patients to visit the Emergency Department.  Dyspnea is often caused by a pulmonary or cardiovascular condition, but it is important to remember that dyspnea can be due to endocrine conditions, toxicologic conditions, neurologic conditions, hematologic conditions, musculoskeletal conditions, and psychiatric conditions. 

The initial approach to all patients with shortness of breath involves the primary survey, or “ABCs” (Airway, Breathing, Circulation).  This first involves checking the patient for a patent airway.  A simple method to assess the airway is to ask the patient to speak and listen for the voice.  A muffled voice, the presence of stridor, hematemesis, or a lethargic patient are clues that a patent airway may not be present.  Problems with the airway, such as an obstructing foreign body, inflammation (i.e., epiglottitis, anaphylactic shock), or vocal cord dysfunction can certainly cause shortness of breath.  Endotracheal intubation may need to be performed before moving forward.  Breathing is assessed by evaluating the function of the lungs.  Steps include looking at how the patient is breathing (fast or slow), measurement of an SpO2 level, and auscultation of both lungs for wheezing, crackles, rhonchi, or distant or absent sounds.  A low oxygen level should be immediately addressed with supplemental oxygen before moving forward.  The patient’s breathing rate and lung sounds can be very helpful in discovering the diagnosis and guiding treatment.  Lastly, circulation should be assessed.  Check the heart rate, blood pressure, peripheral pulses, skin color and temperature, and evaluate for any sites of hemorrhage.  The presence of hypotension or tachycardia should be addressed appropriately based on the presumed cause.  After the primary assessment (“ABCs”) and initial treatment actions, a more detailed history and physical exam should be conducted. 

Pertinent causes of shortness of breath for the emergency practitioner to know are outlined in the chart below. 

 

 

Select Causes of Shortness of Breath (Dyspnea)

Pulmonary

 

Tension pneumothorax, pneumonia, empyema, pleural effusion, pulmonary edema, asthma, COPD

Cardiovascular

 

Acute coronary syndrome (i.e., STEMI), pulmonary embolism, cardiac tamponade, Decompensated Congestive Heart Failure (acute pulmonary edema)

Endocrine

 

Diabetic ketoacidosis (Kussmaul breathing)

Toxicologic

 

Salicylate overdose, or any ingestion that causes a severe metabolic acidosis

Neurologic

 

Intracranial hemorrhage, Stroke, Spinal cord injury, Guillain-Barre syndrome, Myasthenia Gravis crisis (myasthenic crisis)

Hematologic

 

Severe anemia (i.e., GI bleeding, trauma, miscarriage, post-partum hemorrhage, ruptured ectopic pregnancy)

Musculoskeletal

 

Rib fracture, flail chest

Psychiatric

 

Anxiety, Panic attack

Airway Problem

Foreign body, epiglottitis, anaphylactic shock (laryngeal swelling), expanding neck hematoma

 

This patient arrives to the Emergency Department with shortness of breath and generalized weakness or 3 days.  On physical exam, there is tachycardia, tachypnea, normal oxygen saturation, and a markedly elevated glucose.  The Chest X-ray provided is normal; there are no lung infiltrates or pleural effusions. 

This patient has diabetic ketoacidosis (DKA).  DKA is a serious condition of insulin deficiency characterized by hyperglycemia, metabolic acidosis, and ketosis.  Presenting symptoms include weakness, increased thirst (polydipsia), increased hunger (polyphagia), increased urination (polyuria), abdominal pain, or vomiting.  Shortness of breath can also be seen in DKA as the metabolic ketoacidosis triggers an increased respiratory rate to drive more exhaled carbon dioxide out of the body.  This deep rapid breathing seen in severe DKA is known as Kussmaul breathing.  The treatment of DKA involves IV fluids for hydration, insulin infusion, and close monitoring for electrolyte derangements (potassium abnormalities are common).  DKA patients are severely dehydrated due to osmotic diuresis from their hyperglycemic state.  For this reason, IV fluid resuscitation is the first step to DKA management.  Either normal saline or lactated ringers (Choice B) can be used, although large volumes of normal saline can worsen the acidotic state by causing a hyperchloremic metabolic acidosis.  Intravenous fluids should be started with a 20-30cc/kg bolus.  IV insulin infusion (Choice A) should never be started without a potassium level, and no potassium level is provided in the question stem.  Insulin lowers potassium, and administration of insulin without a potassium level can result in hypokalemia, arrythmia, and death.  Endotracheal intubation (Choice D) should be avoided in DKA whenever possible as the patient’s respiratory status serves as a compensation for the metabolic acidosis.  This patient is tachypneic and mildly confused, but he is not somnolent and does not require immediate intubation.  Intubated DKA patients need carefully monitored ventilator settings in combination with blood gas measurements to avoid worsening acidosis and cardiac arrest.  Nebulized beta-2 agonist (i.e., albuterol, salbutamol) is helpful in asthma, however this patient has DKA and not an asthma exacerbation.  IV lactated ringers solution (Choice B) is the best next step.

References

Cite this article as: Joseph Ciano, USA, "Question Of The Day #84," in International Emergency Medicine Education Project, April 15, 2022, https://iem-student.org/2022/04/15/question-of-the-day-84/, date accessed: May 25, 2022

Emergency Procedures: Shoulder Immobilisation

emergency procedures-shoulder immobilisation

Indications

  • Shoulder dislocation (post reduction)
  • Acromioclavicular injuries (grade 1-3)
  • Fracture of humeral head, greater tuberosity or clavicle

This video has been provided by Emergency Procedures App developers (Dr John Mackenzie and Dr James Miers) in order to help medical students, interns in training. Please visit the video source or Emergency Procedures app for more procedure videos and information. 

Contributors

Dr John Mackenzie

Dr John Mackenzie

Dr John Mackenzie MBChB , Dip MSM, FACEM . Staff Specialist Emergency Medicine, Consultant Hyperbaric Medicine Specialist, at Prince of Wales Hospital. Known for cycling endlessly for no apparent reason. 20 years of developing virtual learning for clinicians at all levels.

Dr James Miers

Dr James Miers

Dr James Miers BSc BMBS (Hons) FACEM, Staff Specialist in Emergency Medicine, Prince of Wales Hospital, Sydney. Passion for gypsy jazz and chess. Lead author of Lead author of Emergency Procedures App.

Further Reading